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Abstract
We propose a method for validating surgical knot-

tying motions for beginner’s self-training. Our system
observes trainee’s hands by a RGB-D sensor and de-
scribes the point cloud as a SHOT feature. The features
are used for matching an input image sequence to that
of an expert by dynamic programming. The type of the
knot-tying motion is recognized by the matching score.
The matching enables the system to recognize type of
input knot-tying motion and to validate each frame.
The system specifies inappropriate frames by tempo-
ral validation based on the difference of the matched
frames. Then the system detects and shows inappropri-
ate parts in each inappropriate frame by utilizing the
spatial structure of the feature. We tested our method
on a motion dataset of novice trainees and achieved
favorable performance.

1 Introduction
Medical trainees usually learn surgical procedures

under face-to-face teaching by skillful surgeons. The
skillful surgeons are much busy for their own medical
duties and have very limited time for teaching. For
keeping the trainee’s learning chances, an automatic
system validating trainee’s surgical procedure can be
one of the solutions. Educational studies say that it
is important to fast and effective remediation to indi-
cate inappropriate or imperfect parts to the unskill-
ful trainees. We first target knot-tying motions in su-
ture operations and propose a method that automati-
cally indicates inappropriate parts of trainee’s motions.
Each knot-tying motion is characterized by hand ges-
tures making the knot. Therefore the knot-tying type
is necessary to be recognized and then the inappro-
priate parts for that tying type should be specified.
The proposed method recognizes the knot-tying type
by modeling the skillful hand motion and matching an
input to the models by frame-to-frame, then specifies
the inappropriate frames and visualizes the detected
inappropriate regions of the trainee’s hands.

In general, recognition of hand gesture from a movie
consists of feature extraction and matching the input
to motion models. Hand feature extraction can be
roughly divided into 3D parametric model-based ap-
proach and appearance-based approach.

In the 3D-parametric-model-based approach, hy-
potheses are generated from a model, e.g. a 3-D hand
mesh with joint angle parameters, and then the fea-
ture is extracted as joint angle parameters tracked by
fitting the hypotheses to the observation. Oikonomidis
et al. [2] estimate two strongly interacting hand poses

from RGB-D images using particle swarm optimiza-
tion. The approach has few parameters, but it has
worries in fitting and tracking accuracy. A drastic mis-
take of the fitting wreaks catastrophe for the tracking
and the recognition.

The appearance-based approach extracts the hand
regions from backgrounds and then extracts a motion
feature of whole sequence of foreground regions. Li
et al. [6] proposed sectioned-SIFT, that is temporally
spliced Bag-of-Feature of 3D-SIFT, for recognition of
hand actions during suture surgeries. Biswas et al. [3]
use depth histograms and motion information of fore-
ground regions.

The appearance-based approach is more robust to
complicated hand shape with strong self occlusion than
the model-based approach for the recognition. When
the input motion partially includes an irregular motion
like hesitating motions, however, whole motion cannot
be matched to the appropriate model. Thus in order
to recognize such partially irregular motions, a frame-
wise appearance feature and the frame-wise matching
should be employed.

Several frame-wise 3D appearance descriptors have
been proposed. Spin Images [8] provides the spacial
point distributions for hand regions by projecting 3D
points to a cylindrical surface surrounding the hand
region and counting the point histogram on the sur-
face. FPFH [9] extracts a histogram of the local surface
property around each 3D point of hands as the local
distribution of the surface normals. Since these meth-
ods are based on histograms which coarsely encodes the
spatial property of hand shape, it is difficult to adopt
for the spatial validation. In this study, we employ
a customized SHOT (Signature of Histograms of Ori-
enTations) [10] feature for representing the 3D point
distribution of both hands. Since the feature finer pre-
serves 3D positions and surface normals of points, it is
helpful for the spatial validation of the hand motions.
We customize it and use for a frame-wise feature.

Detection of the inappropriate frames and parts
needs to match an input to models frame-to-frame. For
the matching, Hidden Markov Model [4], CDP (Con-
tinuous Dynamic Programming) [5], and Neural Net-
work [6] are often used. Li et al. [6] proposed a NN-
based method for recognizing hand actions such as “su-
turing”and “tying” in suture operations. Their method
concentrates to recognition of action types but treats
neither indication of inappropriate parts nor temporal-
spatial matching. For spotting and frame-level vali-
dation of tying motions, we take two-step approach.
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First, candidate sections of knot-tying motion are de-
tected from an input sequence which consists of many
tying motions. Next, the candidates and models are
matched frame-to-frame by modified CDP. We utilize
the spatial structure of SHOT feature as the frame-
wise feature of the input and model motions. After the
frame-wise matching to every model, the best-matched
model to the input is determined.

Our method temporally evaluates appropriateness of
each input frame based on the corresponding model
frame, and then spatially evaluates appropriateness of
each part in the inappropriate frames. Finally, it vi-
sualizes the inappropriate parts of the trainee’s pro-
cedure. This paper shows favorable performance of
our method by testing on an our knot-tying motion
dataset.

2 Structure of Knot Tying Motion
A typical knot-tying motions in suture operations

consists of three knot-tying motions. Each knot-tying
motion makes a half hitch. The three half hitches are
alternately tied with obverse and reverse. Surgical op-
erators should tie as fast and correct as possible in
surgical operations. The correctness of a knot-tying
motion is evaluated based on both making knot and
tightening knot techniques. We divide a knot-tying
motion into the following three steps.

closing closing and closing the strand by both hands

tying tying the strand

tightening tightening the strand tension

Figure 1 shows a knot-tying motion and the corre-
sponding steps. The hand motions in the second step
decides the knot type (obverse or reverse), and these
hand postures in the second step are the most impor-
tant for evaluation of making knot technique. For eval-
uation of tightening knot technique, tightening direc-
tion in the third step is the most important.

In this paper, we use the tying step for recognizing
type of tying motions and validation of the motions.

3 Detection of Tying Section Candidates
The system observes point clouds by a RGB-D sen-

sor. The observed points have RGB color information
and XYZ position information. In order to describe the
hand motion, hand regions should be extracted from
the input point clouds. In this paper, we use sim-
ple thresholding of the input position and color which
converted from RGB to HSV for the extraction. These
thresholds are determined experimentally.

We use a transition of the distance between both
hands for detection of tying section candidates. In
knot-tying motions, the hand distance decrease during
closing step. The distance keep constant during tying
step. In tightening step, the distance increase. We di-
vide the hand point cloud to left and right hands by
k-means++ [11], and treat the distance between two
centroids as the distance between both hands. Fig-
ure 2 shows the transition of distances between both

Figure 1. Knot-tying motion flow: The upper im-
ages are cited from [1]

Figure 2. Transition of distances between both
hands : Arrows on the top line represent sections
of actual knot-tying motions containing whole
steps. Boxes on the bottom line represent de-
tected sections.

Table 1. Type of knot-tying motion
Type primary directions direction knot type

hand of of hand (obverse
strand heads motion /reverse)

1 both left : far side backward reverse
hands right : near side

2 both left : near side backward obverse
hands right : near side

3 both left : near side forward reverse
hands right : near side

4 left left : near side backward obverse
hand right : near side

5 left left : near side forward reverse
hand right : near side

6 right left : near side backward reverse
hand right : near side

hands in a sequence that actually consists of 5 times
of knot-tying motions.
In each actual knot-tying motion, the distance be-

tween both hands roughly makes a valley. In order to
detect these sections, we first detect lower bottoms and
then search for higher peaks before and after each bot-
tom. We treat these sections between the peaks before
and after the bottoms as tying section candidates.

4 Recognition of Knot-tying Motion Type
Validation of knot-tying motions in suture opera-

tions requires to discriminate the knot types (obverse
or reverse) of three half hitches respectively. While the
direct observation of a small knot is quite difficult the
knot type can be estimated by observing hands and
identifying their knot-tying motion type. We manu-
ally labeled types of knot-tying motion based on three
attributes; “primary hand” (making knot), “direction
of strand heads at the beginning of the knot-tying mo-
tion”, and “direction of the hand motion.”
For recognition of knot-tying motion type, we con-

struct models of the knot-tying motions using only ty-
ing step sequences. In this study, we focus on typical
6 types of knot-tying motions in Table 1.

4.1 Feature Description
In this paper, we employ a SHOT feature to de-

scribe shapes of both hands in each frame. Figure 3

Figure 3. Structure of SHOT feature
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shows the feature structure. The feature consists of
relative histograms of normals of a point cloud. The
feature consists of Local Reference Frame (LRF) and
SHOT descriptor. LRF is a local coordinate system for
the feature description. SHOT descriptor shows local
shapes based on normals of the points pj in sphere of
radius R around the origin of LRF p. The descriptor
has 32 spatial bins corresponding spatial partition, re-
sulting from 8 azimuth divisions, 2 elevation divisions
and 2 radial divisions (only 4 azimuth divisions are
shown in Figure 3). Each spatial bin consists of a local
normal histogram which has 11 bins. SHOT descrip-
tor consists of jointed these histograms. L1 norm of
the descriptor is normalized to 1.

We assume that the person performing the knot-
tying is facing the camera and that the strand position
relative to the person’s body is almost fixed. In this
study, we assign a gravity center of the hand points in
every frame to p, and we fix the coordinate system of
LRF to the camera’s one. Furthermore, we set R to
150mm in order to enclose both hands.

4.2 Model Construction
We prepare model sequences of each type in the Ta-

ble 1. A model performer randomly try the 6 types of
knot-tying motion. The tying section candidates are
detected from the captured sequence by the method
which has been described in section 3. Then we man-
ually choose sections for the model sequences from the
candidates based on smoothness of the motion.

4.3 Frame-to-Frame Matching and Recognition
of Knot-Tying Motion Type

The system detects several tying section candidates
from an input sequence and describes them as SHOT
feature sequences. We define the frame difference d
between an input and a model as follows.

d =
∑

k

|f I
k − fM

k | (1)

f I
k is the value of the k-th dimension of the feature
vector of the input frame. fM

k is the one of the model
frame. The system matches each tying section candi-
date with the models using CDP matching. The con-
ventional CDP matching minimizes accumulated costs
which is normalized by the model frame length by al-
lowing only stationary or forward transitions for model
frames. Nishimura et al. had proposed non-monotonic
CDP [5] in order to recognize hesitated gestures. Al-
though their method temporally decays the costs in
the accumulation, we minimizes the average cost along
the path regardless of time passage in order to evaluate
equally all frames in the tying motion.

The given path represents the corresponding frame
pairs and the average cost along the path is treated as
the matching cost of the input and model sequences.
If the minimal cost is more than a threshold Tc, we re-
gard the tying section candidate as not matched to the
model. We assume that the tying step lies at the cen-
ter of the actual tying section, and adopt constraints
for the start frame and the finish frame. If the length
of the tying section candidate is n frames, we allow the
frames before (n2 −1)-th frame to be a start frame, and
the frames after n

2 -th frame to be a finish frame. The
best matched model is derived by minimization of the
matching cost under the above conditions. If there is
no model satisfying the condition, we treat the section
as a non-knot-tying motion section.

Figure 4. (Top) Distance map of SHOT features
and minimum cost path. (Bottom) Distance of
the features on the path.

5 Validation of Knot-Tying Motion
The validation of knot-tying motion is divided into

temporal and spacial validation. In this paper, we de-
fine “parts” as the spacial partitions of SHOT descrip-
tor. The specifying inappropriate frames is based on
the frame-to-frame matching. We use the feature dif-
ference of the matched frames for the validation. If a
distance of a matched frame pair is more than thresh-
old Tf , the input frame is detected as an inappropriate
frame. We define the difference of each spatial bin di
as follows.

di =
∑

k∈qi

|f I
k − fM

k | (2)

qi is a set of dimension’s indices corresponding to the i-
th spatial bin. In the inappropriate frames, if di < Ts,
the i-th partition is detected as an inappropriate part.

6 Experimental Results
We evaluated our method based on the following

two cases using ASUSTMXtionTMPro Live sensor as
the RGB-D sensor.
1. Identical person performs every model and an in-

put sequence.

2. A person performs every model sequence and an-
other person performs an input sequence.

6.1 Result of Recognition Type of Knot Tying
Motion

In case 1, a performer tries randomly the 6 types
of knot-tying motion. We picked up manually 6 ty-
ing section candidates as model sequences. The in-
put sequence of case 1 actually consists of 14 times of
knot-tying motion. 25 tying section candidates were
detected in the input sequence automatically. We set
the threshold Td to 40mm and the threshold of DP out-
put Tc to 0.35. The section which can be determined
visually what motion was tried should be identified the
motion type even if the motion was interrupted. In the
above conditions, the correct recognition rate was 92%
(23 sections), the false-negative rate was 4% (1 section)
and the false-positive rate was 4% (1 section). The
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Figure 5. Examples of matched frames: The red
rectangle shows inappropriate frame. The col-
ored regions in the hands of the inappropriate
frame show inappropriate parts.

Figure 6. Inappropriate frames and parts:
The colored regions show inappropriate parts.
(a),(b),(c): Matched frames which has more
difference between input and model left-hand’s
shapes and relative position of both hands.
(d),(e),(f): Matched frames which has more dif-
ference between input and model hand’s shapes
of both hands.

false-negative was detected for interrupted motion sec-
tion, and the false-positive was detected for re-holding
strand motion section.

In case 2, we reuse the model sequences of case 1.
The input sequence of case 2 actually consists of 18
times of knot-tying motion. We set Td to 50mm and
Tc to 0.45. 23 tying section candidates were detected.
The correct recognition rate was 91% (21 sections), and
the false recognition rate was 9% (2 sections).

6.2 Result of Matching Frame-to-Frame

Figure 4 shows the results of the frame-to-frame
matching. Top of Figure 4 is the distance map of the
features. The vertical axis is the frame number of the
model sequence, and the horizontal one is that of the
input sequence. The line on the distance map indi-
cates the minimum cost path provided by CDP match-
ing. The vertical broken lines correspond frame pairs
in Figure 5. Bottom of Figure 4 shows the distances of
the features on the path. Figure 5 shows the matched
frames and the results of the temporal-spatial valida-
tion. We set Tf to 0.33 and Ts to 0.2.

Figure 6 shows examples of the inappropriate frames
and parts. Our method detected both the differences
of hand shapes and those of relative positions.

7 Conclusion
In this paper, we propose a system which tempo-

rally and spatially validate knot-tying procedure for
self-training of surgical procedure. Our system recog-
nizes the type of the knot-tying motion, and matches
an input sequence and the 6 models frame-to-frame us-
ing modified CDP matching and SHOT feature. And
we utilize SHOT feature for the spatial validation of
the input procedures. Our future work includes detec-
tion of unknown motions.
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