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Abstract

Sparse bundle adjustment (SBA) is the state of the
art method for simultaneously optimizing a set of cam-
era poses and 3D points. The multibody bundle adjust-
ment optimizes the static scene and the moving rigid
object(s). The result is one camera path representing
the main camera motion and virtual camera path(s)
for each of the independently moving objects in the
scene. The bundle adjustment for the multibody prob-
lem is performed in a joint optimization. Main mo-
tion (static scene) and object motion(s) are included
in the optimization such that the sparse algorithm of
SBA can still be applied, even when enforcing the con-
straint that main camera and object camera share the
same intrinsic parameters. The joint optimization ap-
proach enables weighting the resulting error for each
of the motion models and therefore influences the opti-
mization process. Our experiments with synthetic and
natural image data show that an appropriate weighting
leads to more accurate camera parameters.

1 Introduction

Structure and motion (SAM) recovery consists of fea-
ture detection, correspondence analysis, outlier elimi-
nation, and bundle adjustment. The idea of bundle
adjustment is to minimize the distance between the
reprojection of an estimated 3D object point and the
measured feature point for each camera, in which the
3D point is visible. Bundle adjustment uses a statis-
tical error model which is equivalent to a maximum
likelihood estimator and simultaneously estimates the
camera parameters and the 3D positions of feature
points [7, 10]. Sparse bundle adjustment (SBA) is the
standard optimization method for this problem and
several extensions have been proposed to improve the
performance [5, 7] or the applicability [1, 2, 6, 9].

In [4], a multibody SAM recovery approach is intro-
duced. One motion model represents the static scene
and another one represents a rigidly moving object. By
using the constraint that the intrinsic camera parame-
ters are identical for both motion models, the estima-
tion of the focal length is improved.

We introduce a formulation of the multibody bun-
dle adjustment which enables the weighting of different
motion models. Additionally, it allows for a sparse op-
timization of the resulting multibody Jacobian matrix.
It is shown that the reconstruction improves by the
weighting, if the motion models have a different repre-
sentation quality, i.e. a different amount of noise. For
many applications, e.g. the three-dimensional recon-
struction of scene and moving objects from a driving
car, this assumption is well justified [8]. For the eval-
uation, synthetic as well as natural data is used.

In the following Sect. 2, the reference bundle adjust-
ment and the new approach for the joint optimization
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of the multibody problem are explained. In Sect. 3, the
experimental conditions are defined. Sect. 4 shows the
results on synthetic data while Sect. 5 demonstrates
the application with natural images. In Sect. 6, the
paper is concluded.

2 Multibody Bundle Adjustment

In [4], it is shown that the estimation of the variant
focal length improves by enforcing the constraint that
both cameras (the one which observes the static ge-
ometry and the virtual camera for the moving object)
share the same focal length.

We extend the sparse bundle adjustment (SBA)
provided by the authors of [7] to the new approach
of weighted multibody sparse bundle adjustment (WM-
SBA). In contrast to [4], our formulation uses the
sparse structure of the Jacobian [7] for optimizing the
static scene and moving objects. Additionally, we in-
troduce a weighting scheme for the reprojection errors.
As we extended the SBA package [7], we adopt their
notation.

2.1 Bundle Adjustment

The bundle adjustment aims at minimizing the fol-
lowing term [7]:
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Here, the camera parameters are represented by the
vectors aj and the 3D object points are represented by
the vectors b;. The observation values are the feature
points xjj in the images. The function Q(a,b) is de-
termined by the projection of the 3D object point b
onto the image plane of the camera represented by its
camera parameters a. The extrinsic parameters con-
sist of translation T and rotation R, which are used to
map the 3D object point b; from the camera coordinate
system to the world coordinate system:

The projection is determined by the intrinsic param-
eters of the camera. In [7], five intrinsic parameters are
assumed (focal length f, principal point (up,vo), aspect
ratio o, and skew s). The intrinsic parameters build
the calibration matrix K,
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Additionally, up to 5 parameters are allowed for the
radial distortion coefficients. All intrinsic parameters
can be determined by a calibration (if they are fixed
throughout the image sequence) or are optimized by
the bundle adjustment. The projection is visualized in
Fig. 1 with the green cameras and object points. The
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reference method [7] builds the Jacobian Matrix J for
the optimization of (1). Here is a small example for
m =2 images and n =3 3D points:

Arp 0 By 0 0
0 A By 0 0
_ Ay 0 0 By 0
J= ap 0 By o 3)
A3 0 0 0 By
0 Ap 0 0 By

To reduce the computation time, the Levenberg
Marquardt based optimization exploits the sparse
structure of the Jacobian matrix [7].

2.2 WM-SBA: Weighted Multibody SBA

Our formulation of the multibody bundle adjust-
ment preserves the sparsity of the Jacobian matrix
and enables the joint optimization by describing the
3D object points of the moving object OBJ relative
to the MAIN camera coordinate system. The extrin-
sic parameters of the static scene geometry are given
as R® and T (with additional () to indicate mo-
tion model 0). The extrinsic parameters of the moving
object, RM and TW are described relative to motion

model 0. A 3D object point bi'(l)is rotated and trans-
lated such that it can be projected into the camera
image with the camera parameters of motion model 0:
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Note, that R® and T hold the same number of pa-
rameters as in the reference optimization approach.

(1)

The second motion model with parameters a;”’ and

J
. . .
observation values bi( ) is visualized with orange color

in Fig. 1. Now, the Jacobian matrix J’ is formulated
by alternating the object points of the different motion
models on the right hand side. This leads to 2 x 3 sized
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The submatrices AE?O) have the same entries as the

matrices A;; for motion model 0 (cf. eq. (3)). The sub-
matrices AE! D how consist of the relative parameters of
the moving object with respect to the MAIN motion

10)

model. It follows, that the submatrices Afj depend

(00)

ij

AE_?O) 0
A0 4010

on the MAIN motion camera parameters like A

By subsuming each block A}, = <

S0 j ij
and each block B}; = N (1) | » the global
’ 0 B

ij
structure of the matrix with its zeros is preserved (cf.
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Figure 1: Projection of 3D points into the cameras.
The green cameras and points belong to the real cam-
era motion (MAIN), the orange ones belong to the 3D
points of the moving object and the (virtual) camera
path (OBJ).

eq. (3)). Hence, the technique of sparse optimization [7]
can still be applied. Only the sizes of the matrices and
their entries changed. If five intrinsic parameters are
optimized additionally to the six extrinsic parameters,
the WM-SBA builds 4 x 17 sized submatrices instead
of 2 x 11 sized matrices for each motion model. The
resulting reprojection error of the WM-SBA can be
separated into the two parts:

m

n 0 0 0

O = ¥ Y [jo@”b") X7, ©)
i=1j=1
n m 0 1 0 1 1
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A constant A weights the costs of motion models:

min O .M
2 b0 o0 D

(N

Practically, the weighting is implemented by the ad-
ditional A multiplied to the covariance matrices of the
2D points for the corresponding motion model. Due
to the joint optimization approach, the weighting in-
fluences the optimization and leads to a different min-
imum. The method can easily be extended to an arbi-
trary number of motion models.

3 Experiments
In our experiments, two motion models are con-

structed, a main motion model (MAIN) and an ob-
ject motion model (OBJ). Both motion models observe

Figure 2: Dataset Syn3 with a smaller OBJ volume
compared to MAIN; both camera paths start at the
same position.



35

60 90
80 -
0 _ 50 | JERSCIE R P
o . 70 -
25 | R -
—————— T 40 PR P 60 Pt
I. "’ P P ke
— 20 - K - —_ P P —_
a -7 E a0l / - g ,/ —.=: OBJ ref-SBA
E e & L < & 40 —:— MAIN ref-SBA
sro 7 - s == WM-SBA 1
4 == OBJ ref-SBA 20t S - 30 4
0r L7 == MAIN ref-SBA 1 KA ==\ OBJ ref-SBA ST -
s == WM-SBA 1 AR — .= MAIN ref.SBA 201 4 -
R w0 ;- E : <
51 4 7, == WM-SBA 1 ! -
4 R 10 | e
O i ettt e o ————— - P i i m i ————— - P PPy Py [ -
0 0.25 05 0.75 1 0 0.25 05 0.75 1 0 0.25 05 0.75 1

& [px]
& [px]

- - ? 04 .7/

WM-SBA 10°

=== WM-SBA 1

—— WM-SBA 102
—— WM-SBA 103
—— WM-SBA 10

-

== WM-SBA 1

—— WM-SBA 102
~—— WM-SBA 10¢
—— WM-SBA 10

& [px]

0 0.25 0.5

o [px]

(a) Synl: 250-250 pts.

0.75 1 0 0.25

o [px]

(b) Syn2: 250-250 pts.

05 0.75 1 o 0.25 05

o [px]

(c) Syn3: 500-50 pts.

0.75 1

Figure 3: Results for the synthetic data. We show the mean errors €y for 500 experiments of the focal length,
assumed to be unknown and varying (ground truth [px]: 1406). In Synl both motion models have the same
representation. In Syn2 and Syn3, the OBJ points have more noise due to the smaller size of the cube.

points on cubes. For the evaluation, noise is added to
the initial camera parameters (67 = 0.1, 6% = 1075),
the 3D points (6% = 1), and the 2D points. To account
for the usually larger uncertainty in the direction of
the optical axis [11], the noise for the 3D points in this
direction is amplified by a factor of 5. Throughout
one experiment, the noise on the camera parameters
and the 3D points remains constant while the noise on
the 2D points is varied. We construct a data set Synl
with equal amount of noise for MAIN and OBJ (iden-
tical size of cubes, equal number of points), and data
sets Syn2 and Syn3 with more noise on the OBJ model,
constructed by a smaller OBJ cube. In Syn3, the cubes
have different numbers of points (500 and 50 instead
of 250 both). Syn3 is visualized in Fig. 2.

The intrinsic parameters are initialized with their
ground truth values. To obtain stable results, 500 runs
with the same ground truth are constructed for each
2D point noise level. All evaluated methods get exactly
the same initial input positions of cameras, 3D points,
and 2D points. The compared methods are ref-SBA
and WM-SBA with different values for the weighting
coefficient A, A € {1,10%,10* 10%}. The results for WM-
SBA with the weighting coefficient 1 should match the
approach proposed in [4]. We choose 3 cameras for
the experiments because SBA applications start with
an initial reconstruction of 2 or 3 cameras no matter
wether the sequential [9] or the hierarchical [3] scheme
is used. We show the results for the focal lengths in
Sect. 4. The results for the principle points are similar
since its optimization is closely related to the estima-
tion of the focal length. The computational time using
WDM-SBA instead of ref-SBA scales by a factor of 3.

4 Results

Due to the constrained intrinsic parameters, the
joint optimization show a large gain compared to the
separated optimization (top row of Fig. 3). For Syn2
and Syn3, the OBJ provides less accuracy than MAIN
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as it was expected. For the smaller set of points for
OBJ (Syn3), the error increases further. The joint op-
timization WM-SBA provides much better results as
shown for A = 1. The bottom row of Fig. 3 shows a
comparison of different weightings A. For Synl, the
weighting A = 1 leads to the best results. For a nois-
ier OBJ model compared to MAIN, the weighting with
A = 10% performs best (Syn2). For the additional un-
even representation with different numbers of points
(Syn3), the results are comparable to Syn2 and A = 102
is still the best choice. For both sets, Syn2 and Syn3,
A =1 leads to the largest errors. The optimal A does
not depend significantly on the unevenly distributed
numbers of points, but on their spatial distribution.
The lower depth of field of OBJ induces an amplifi-
cation of the noise on the 3D points compared to the
better distributed points of MAIN.

5 Application

In Fig. 4, examples for the application scenario are
presented. The goal is the accurate multibody recon-
struction of all cameras and 3D object points. The
feature points are selected with the Harris corner de-
tector and tracked with the KLT tracker. The re-
sulting feature tracks are manually grouped into static
scene (MAIN model) and moving object (OBJ model).
The evaluated methods optimize extrinsic and intrinsic
(variant focal length and principal point) parameters,
like in Sect. 3. Initial parameters are estimated us-
ing standard SBA and manually set, constant intrinsic
parameters. The results are shown in the Fig. 5.

In both sequences, the movement of the moving ob-
ject OBJ is not correctly captured by the ref-SBA ap-
proach. The movement towards the observer is in-
terpreted as an increase in focal length f. Instead,
it should be explained by a movement of the virtual
OBJ camera towards the observer with constant f.
The correct interpretation is achieved by the proposed
constrained WM-SBA which assumes identical intrin-
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(b) Nar2 (21 frames) with 2652 trajectories on the static scene and 52 trajectories on the moving object (black car).

Figure 4: Natural image sequences: the green points determine the MAIN motion model, the white points on the
bus determine the moving object OBJ. In Natl, only the black car in considered as moving object.
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Figure 5: Resulting focal lengths. In Natl (left), WM-
SBA with A € {10?,10%10°} lead to the same result.
In Nar2 (right), A € {10%,10°} give the same result.

sic parameters for MAIN and OBJ for each frame.

Some selections of A lead to the same result
(cf. Fig. 5). Together with the result in Sect. 3, we
can infer that the points of OBJ provide valuable scene
information in the joint optimization of the WM-SBA.
Although ground truth values for the natural sequences
are not available, the computed focal lengths for WM-
SBA with A =1 in Fig. 5, left, appear to be too small.
The results of WM-SBA with A € {10%,10*} provide
reasonable results for both sequences.

6 Conclusions

We propose a new multibody sparse bundle adjust-
ment approach. It allows for joint optimization of
static scene and moving objects. It is possible to
weight costs arising from different motion models. It is
shown with synthetic and natural data that appropri-
ate weightings lead to more accurate camera param-
eters compared to the common multibody bundle ad-
justment. It turns out that the optimal weighting de-
pends on the spatial distribution of the observed points
in the scene.

The presented application reconstructs the static
scene and moving objects in traffic situations observed
from a moving car. Although the moving object in
the video is represented with very few 3D points, the
proposed approach results in a reliable estimation of
the intrinsic camera parameters while the reference
fails. WM-SBA gives reliable results using the pro-
posed weighting.

Future works shall investigate how to correctly
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choose the A for optimal results. The spatial distri-
bution will be exploited to infer suitable values of A.
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