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Abstract

We present a moving object detection system
for surveillance based on Hierarchical Color-guided
Motion segmentation (HiCoMo). The HiCoMo sys-
tem does not require training and consists of two main
stages: (1) hierarchical color-guided motion segmen-
tation, and (2) motion-based verification. The first
stage is a hierarchical segmentation framework, where
at each level a balance is made between static and tem-
poral features. So that groups of pizels develop into
semantic object segments. In the second stage, these
object segments are further analyzed in terms of mo-
tion saliency and consistency, in order to finalize the
object detection results. Our proposed system is tested
on real-life surveillance videos containing various sce-
narios. The detection results outperform a state-of-
the-art training-free moving object detection algorithm
in recall (90.2% compared to 81.6%) while having a
competitively promising precision (96.5% compared to
97.4%). The system has a generic nature and real-time
implementation potential, which makes it applicable to
various applications of computer vision.

1 Introduction

Intelligent video-based surveillance systems are cru-
cial in both public and private sites to provide safety
for humans and property. Generally, video-based
surveillance systems target three key features: detec-
tion of objects, tracking of objects, and analysis of the
behavior of objects. Object detection, especially mov-
ing object detection, is an important task for these sys-
tems. This importance is motivated by the fact that
the number and individual locations of moving objects
are essential to perform further semantic analysis. The
state-of-the-art approaches for moving object detection
can be divided into two categories: training-based ob-
ject detection and training-free object detection.

For training-based detectors, objects are located
by scanning the video frames, using a trained object
detector. Traditionally, the object detector is con-
structed by offline training on large datasets [1]. The
drawback of these methods is that they need to be
trained for each object of interest. For example, dif-
ferent training sets and descriptors are needed for ve-
hicles on a busy road and pedestrians in a shopping
area. Moreover, objects can be missed if their appear-
ances differ from the training samples. There are also
methods based on online learning [3], which adaptively
update their knowledge and descriptions on the ob-
jects to be detected. However, these detectors often
suffer from drifting problems, e.g., it may gradually
learn to detect objects that are not of primary inter-
est. Another popular technique, instead of learning
the appearance of objects, is to learn the appearance
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of the background and to perform background sub-
traction [2]. When the background is complex and
dynamic, learning the background model can be chal-
lenging, often leading to erroneous object detections.

For training-free detectors, various motion segmen-
tation methods have been developed. Some tech-
niques [4, 5] aim to group pixels into segments, ac-
cording to the motion patterns of foreground objects.
However, they cannot handle many relevant practical
cases, e.g. waving branches or rippling water occur-
ring in the background. The DECOLOR approach [6]
is claimed to solve the above problems, but in our ex-
perience, the segmentation of many moving objects in
close proximity of each other remains challenging.

In this paper, we present a novel two-stage training-
free moving object detection system. It is specifically
designed to handle challenging detection tasks, such as
view-independent object detection and occlusion han-
dling. This approach enables a broad usage of the sys-
tem in various surveillance scenarios. The first stage of
the system is a novel hierarchical color-guided motion
segmentation algorithm. It uses a hierarchical segmen-
tation that starts on the basis of static features (color)
and increasingly incorporates temporal features to de-
fine the segments. This approach is motivated by the
fact that static features are distinctive at the level of
object parts, but are ambiguous at object level (ob-
jects can have multiple colors). For temporal features,
the contrary is true: they are ambiguous at object-part
level, but are very distinctive at the object level [5]. By
combining the two features in a hierarchical approach,
we can exploit features at the level where they are most
discriminative. The output of the first stage consists
of the locations of object candidates together with a
dense motion field (optical flow). After this stage, we
employ a robust motion saliency and consistency fil-
tering [7] to finalize the object detections.

The major benefits of our moving object detection
system are as follows. First, the system is training-
free and has the ability to handle challenging detection
tasks, such as view-independent object detection and
occlusion handling. This ensures a broad usage of the
system within various surveillance domains. Second,
by using our novel hierarchical segmentation, it will be
shown that moving object detection can be improved
with respect to the state-of-the-art [6]. Third, the im-
proved locations of objects together with their motion
maps enable advanced semantic extensions of the sys-
tem, such as object tracking and behavior recognition.

This paper is organized as follows. Section 2 begins
with an overview of the framework. Sections 2.1 and
2.2 explain the two stages of the object detection sys-
tem in detail. Section 3 illustrates the experimental
results of our HiCoMo system and compares it with a
state-of-the-art approach [6]. In Section 4, conclusions
are drawn and future work is discussed.



2 Moving Object Detection

Our object detection system uses a widely adopted
two-stage process: the locations of moving objects are
defined in the first stage, and the detections are com-
pleted in the second stage. The system design is visu-
alized in Figure 1. The first stage presents our novel
segmentation algorithm: hierarchical color-guided mo-
tion segmentation. The system aims at segmenting a
video frame into semantic regions for reliable hypothe-
sis generation of moving objects. For doing so, it uses
a bottom-up segmentation process with 6 levels of hi-
erarchy. In the second stage, motion-based verification
of the hypotheses is performed to refine the detections,
based on motion saliency and consistency.
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Figure 1. Overview of HiCoMo system.

2.1 Object Hypothesis Generation

In video analysis, static features and temporal fea-
tures are both important to segment the frame into
semantic regions. It is obvious that static features are
ambiguous at object level, while the temporal features
are inaccurate at pixel level. For example, objects can
contain several segments, each having their own color.
This makes static features (color) unreliable descrip-
tors of such objects. For temporal features, pixel-based
motion vectors can differ between the center of the
object and its contour. These observations inspire us
to develop our hierarchical segmentation algorithm, in
which we adjust the influence of the two types of fea-
tures through a fine-to-coarse level of segmentation.
It generates the hypothesis of the moving objects by
means of a 6-level hierarchical color-guided motion seg-
mentation. The algorithm also creates a binary tem-
poral feature map and a dense optical flow map for the
second stage, in order to refine the hypothesis. In the
first 5 hierarchical levels of our segmentation, we use
the Felzenszwalb segmentation [8] algorithm.

2.1.1 Felzenszwalb Algorithm

Felzenszwalb’s method initially assumes that each
pixel is an individual segment and an edge weight is
defined as the difference of RGB values for each pair of
neighboring pixels. For each segment, an intra-region
weight W4 is calculated as the maximum edge weight
within a Segment A. The merging of segments is based
on two values, the minimum intra-weight Wy, _.(A, B)
of a pair of segments (A and B) and the minimum
inter-weight W,,_;(A, B). The weight W,,_.(A, B)
is defined as min(Wa + 74, Wp + 75), where 7 is a
threshold set to 74 = k/|A|, where |A| is the amount
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of pixels in Segment A and k is a constant. The weight
Win—i(4, B) is defined as the minimum edge weight in
the union set A () B. The criterion for merging the two
segments is called merge predicate P(A, B):

1 if Wi—i(A, B) < Wim—a(A, B),
0 else.

P = { 1)
2.1.2 Stage 1: Hierarchical Color-guided Motion
Segmentation

The 6 levels in our hierarchical segmentation are
organized as follows. The first level performs purely
color-based over-segmentation. Then, Levels 2 to 5
perform temporal-color-based segmentation, where the
influence of the temporal features is increased at each
level, while Level 6 performs segment merging only
using temporal features. For efficiency towards real-
time operation, we define two types of temporal fea-
tures: one is based on image differencing of consec-
utive frames and the other is based on optical flow
estimation. The first one is less computational expen-
sive, but sufficient to define the merge predicate in case
the temporal features are not decisive for segmentation
(Level 2 to 5). The second one is more accurate and
used when we fully rely on the temporal features as in
Level 6. At Level 1, we use the original Felzenszwalb’s
algorithm to over-segment the image using color fea-
tures only. For Levels 2 to 5, we introduce a temporal-
color merge predicate:

{ 1 if (Wi s(A, B) < Win_a(A, B))A
P(A,B) =

(M(A) = M(B)),
0 else.

It contains the original color-only terms W,,_,(A, B)
and W,,,_;(A, B) with an additional temporal feature
term M(A) = M(B). This term expresses that the
temporal features of Segment A and B must be equal
in order for them to merge. Here, we use the first type
of temporal features, which results in a binary tem-
poral feature map M and is computed by thresholding
the absolute intensity differences of pixels from consec-
utive frames. A pixel in M has the value unity, if the
absolute pixel difference between consecutive frames is
larger than 5, and 0 otherwise (see [9]). Let M4 denote
the number of pixels in A for which their value in M
equals unity, then we obtain the temporal feature of
Segment A with:

(2)

1 if Ma/|A] > 6,

M(A) :{ 0 if Ma/|A] <6 (3)

where |A] is the number of pixels in Segment A and §
denotes the fraction threshold, indicating that a cer-
tain fraction of the pixels in Segment A have changed.
More precisely, the temporal feature of a segment ex-
presses that at least a certain percentage of its pix-
els has a temporal difference larger than 5. We in-
crease the fraction threshold § in each of the 4 color-
temporal segmentation levels. The values used for §
are {0.05,0.1,0.15,0.2}. By increasing ¢, we raise the
influence of temporal features. This can be explained:
when considering 6 = 0, the temporal features of all
segments have value unity and therefore are not dis-
tinctive; by increasing ¢, some segments will keep the
value unity and others obtain value zero, thereby in-
creasing the distinctiveness of the temporal features.



Besides increasing the influence of temporal features,
we also decrease the influence of color features. We
do this by increasing « used to compute the weight
Win—a(A, B). This allows larger pixel color differences
to appear inside a segment, so that the influence of
color features is reduced. Furthermore, we start with
a minimum segment size S,, and increase this value
for Levels 3 and 5. To improve efficiency, we remove
redundant edges from the graph prior to continuing
with the next level of segmentation.

In the 6th and final level of segmentation, we fully
rely on the temporal features to finalize the segmen-
tation. Here, we use the second type of temporal fea-
tures, i.e. the dense normalized optical flow. For each
segment, its temporal feature is computed as the aver-
age and variance of the flow inside the segment. On the
basis of these features, we apply a statistical segment
merging [7]. This involves measuring the several sta-
tistical parameters for each segment and then merging
segments when these parameters are sufficiently close.

The final temporal feature map is created by tak-
ing the outputs of the 6th level and computing the bi-
nary map, according to Equation (3), with a threshold
6 = 0.3. This temporal feature map, providing moving
object hypotheses, is returned together with the optical
flow field to the second stage of our HiCoMo system,
which is described in the next section. The pseudo-
code of the above-described hierarchical segmentation
is provided by Algorithm 1.

Input: Two consecutive frames;
Level 1: Create initial temporal feature map; perform
over-segmentation based on color features;
for Level 2 to 5 do
Inherit graph expression of the image; update x and §;
update temporal feature map;
for each segment do
Extract the pair of segments A and B;
re-calculate the W,,,_, (A, B) using new
if P(A,B)=1 according to Eqn. (2) then
Join A and B as a new segment; Update the
weights of the new segment and delete the
corresponding edges;
end

end

end

Level 6: Perform statistical segment merging based on dense
optical flow.

Output: Temporal feature map (hypotheses of moving
objects) with dense optical flow map.

Algorithm 1: Our hierarchical color-guided motion seg-
mentation in pseudo-code.

2.2 Stage 2: Object Hypothesis Verification

At this stage, the previously generated moving ob-
ject hypotheses are verified in order to remove the false
alarms. The verification is achieved through a cas-
caded motion-based hypothesis verification, which em-
ploys motion saliency and consistency.

A. Verification based on Motion Saliency. In video
surveillance, we aim at detecting moving objects,
which implies that they have salient motion compared
to their surroundings. We remove the false posi-
tives from our candidate detections by checking motion
saliency. We first extract the Region of Interest (ROI),
including the region outer part Rop; of a candidate and
its local background Ry, as defined in [7]. Then, we
calculate the region-level motion of Ru; as vep; and of
Ry, as vy, based on the optical flow calculated in the
previous stage. Last, motion saliency is defined by two
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c d
Figure 2. R(egults of HiCoMo systén)lz (a) initial
temporal feature map; (b) hierarchical segmen-
tation; (c) final temporal feature map; (d) detec-
tions after object hypothesis verification.

criteria to verify the hypothesis: |[vop;|—|Vig| > T1 and
Ivobjfvbgl

[Vob, |
move false positives whose motion is intrinsically small
(Criterion 1) or relatively small (Criterion 2) compared
to the surroundings (e.g. waving trees).

B. Verification based on Motion Consistency. Mo-
tion consistency is defined to further improve the de-
tections based on the assumption that a moving object
cannot suddenly disappear unless it leaves the moni-
tored area. For each detection in the previous frame,
we search for a pre-defined neighboring area in the cur-
rent frame. If there is no detection in the search area,
the previous detection is propagated to the current
frame. The recovered detection is re-verified through
the motion-saliency verification described in the pre-
vious paragraph. Complex detection-by-tracking al-
gorithms are thus avoided by re-using the flow values
computed before. Figure 2 illustrates the outputs of
the different stages of our system.

> T,. The two criteria are imposed to re-

3 Experiments

We validate our moving object detection system us-
ing three videos captured from crossroads (S1), two
videos from parking lots (S2) and one video from
“PETS 2009” (S3) [10]. The crossroads and park-
ing lots videos have a resolution of 1280 x 960 pixels
and their length varies between 180 and 260 frames.
“PETS 2009” video has a resolution of 768 x 576 pix-
els and 230 frames. Two categories of moving objects
are captured: vehicles and pedestrians. The vehicles
are of different types (passenger car, van, truck, etc.)
and have a variable motion pattern (cruising, turning
and parking). Furthermore, the vehicles and pedestri-
ans present are recorded from different viewing angles
and distances from the camera. For parameters used
in our system: 77 and 75 are set to 0.1; the minimum
segment sizes S, used for each of the 6 segmentation
levels are {100, 100, 200, 200, 400, 400} for Levels 1 to
6, respectively; for segmentation Levels 1 to 5, k equals
{50,150, 250, 450, 850}, respectively. These parame-
ters were set experimentally and applied to all our test
videos. To evaluate the performance of our HiCoMo
system, we have compared it with a state-of-the-art



Table 1. Detection results of HiCoMo and DE-
COLOR. “Num” indicates the number of mov-
ing objects in the videos. “P” and “R” stands
for Precision and Recall respectively.

’ Videos ‘ Num ‘ Methods ‘ P (%) ‘ R (%) ‘

MiCoMo | 990 | 912
SL 199 | DRcoLoR | 983 | s7.6
MiCoMo | 952 | 909
521 605 | hRCOLOR | 963 | 851
MiCoMo | 947 | 889
931 979 | DRCOLOR | 972 | 733

a b
Figure 3. D(et)ection results: upper shows results
of HiCoMo and bottom are results of DECOLOR.
(a) Pedestrians are crowded and occluded; (b) a
vehicle is parking, a vehicle is partly occluded
and a pedestrian is walking.

moving object detection algorithm DECOLOR [6].

Table 1 shows the detection results of the two ap-
proaches, in terms of recall and precision. The aver-
age recall over all 6 videos of our approach is 90.2%,
compared to 81.6% of DECOLOR. The improved re-
sult of our HiCoMo system can be explained by its
better segmentation capability, when multiple objects
are close to each other. Our approach achieves this
segmentation, by adjusting the influence of static fea-
tures and temporal features at different levels of seg-
mentation. This can be seen from the adaptation of
the ¢ fraction parameter and x parameter adjustment
for each segmentation level. This mechanism ensures
more reliable semantic segments. In S2 and 53, the
precision of our approach is lower because the parame-
ters in our segmentation are chosen to allow aggres-
sive separation of occluded objects. It results in a
slight decrease in precision, which is compensated by
large improvement in recall. This design is motivated
by our aim to minimize miss detections while keeping
high precision. Figure 3 shows a visual comparison of
HiCoMo and DECOLOR. In Figure 3(a), DECOLOR
erroneously detects two crowded pedestrians as a single
object while HiCoMo successfully separates them from
each other. In Figure 3(b), both approaches locate
the walking pedestrian and the vehicle partly occluded
with one parked vehicle. However, DECOLOR misses
one car which is turning for parking, because the local
change in the object is small, which indicates an ex-
ample failure of DECOLOR. In contrast, our algorithm
exploits static features to guide the segmentation and
successfully separates the vehicle from the background.
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4 Conclusions and Future work

In this paper, we have presented our HiCoMo sys-
tem: a training-free system for moving object detection
by introducing the hierarchical color-guided motion
segmentation algorithm. The hierarchical segmenta-
tion functions as the first stage of the system to locate
moving object candidates. This segmentation aims at
clustering the changes in the scene so that moving ob-
jects are found. The hierarchy ensures that temporal
features obtain gradually a higher weight than static
features. Motion saliency and consistency are analyzed
in the second stage, to obtain a higher accuracy and
improved robustness in moving object detection.

We have evaluated our HiCoMo system for vari-
ous surveillance scenes with different moving objects.
The system is compared against a state-of-the-art
training-free detection approach. The experiments
show that the HiCoMo system has a competitive pre-
cision of 96.5% (compared to 97.4%) and higher recall
of 90.2% (compared to 81.6%). Furthermore, our sys-
tem demonstrates a better segmentation ability when
objects are close to each other. Therefore, we can con-
clude that our training-free approach is attractive to
many video surveillance scenarios and applications.

In future work, extensive tests will be performed to
validate the generic applicability of the system. For
this, more datasets will be recorded, each focusing on
different surveillance applications, i.e., harbor surveil-
lance, traffic surveillance, and perimeter surveillance.
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