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Abstract

Discriminative locality alignment (DLA) has been
successfully applied in similar handwritten Chinese
character recognition (SHCCR). But, the performance
of DLA heavily depends on the choice of parameters
and the optimal parameters among different groups of
similar characters are not consistent. To address this
problem, we present an improved method with few pa-
rameters, called adaptive discriminative locality align-
ment (ADLA), whose optimal parameters are the same
for different groups of similar characters. Further, the
kernel discriminative locality alignment (KADLA) is
formulated. The experimental results demonstrate that
ADLA has higher performance than DLA in recogni-
tion rate, and KADLA has even higher recognition
rate. In practice, Since KADLA involves much more
time and storage cost, ADLA is a better choice for
SHCCR.

1 Introduction

In recent years, handwritten Chinese character recog-
nition (HCCR) has aroused intensive attention due
to the development of PC and handheld devices
(e.g., smart phone, writing tablets), and impressive
achievements in both research and application have
been obtained [1]. However, the recognition of uncon-
strained handwriting still involves some challenges,
e.g., varied writing styles, confusion between similar
characters and large set of characters [2, 3]. Jin’s
work [4], as well as classification results of Chinese
handwriting recognition competition in ICDAR 2013
(CHRC2013), shows that the decrease of recognition
rate in unconstrained HCCR mainly results from the
resemblance of similar characters. Some examples
of similar characters from the SCUT-COUCH2009
dataset [4] are shown in Figure 1.

Tao et al.[5] introduce discriminative locality align-
ment (DLA) [6, 7] to SHCCR and demonstrate that
DLA has better performance than linear discriminant
analysis (LDA) [8]. Later, to improve its performance
on nonlinear features, kernel discriminative locality
alignment (KDLA) is proposed [9]. Although DLA has
many advantages, e.g., overcoming the nonlinearity of
the distribution of samples, preserving discriminative
information over local patches, and avoiding the
matrix singularity problem, DLA is very sensitive to
the choice of parameters, and the optimal parameters
for each group of similar characters are not consistent.
To overcome the problems above, we present

an improved DLA, termed adaptive discriminative
locality alignment(ADLA). The proposed method
only involves one parameter, and it adaptively selects
the parameters in DLA. In the training phase, the
process of parameters optimization is not needed.
Correspondingly, the kernel adaptive discriminative
locality alignment (KADLA) is also formulated in this
paper.

The rest of the paper is organized as follows. Section
2 presents the ADLA and KADLA methods. Experi-
ments and analysis are presented in Section 3. Section
4 concludes the paper.

2 Proposed methods

For a set of training samples X = [x1, . . . , xN ], each
sample xi ∈ Rm, i = 1, 2, . . . , N , and linear dimen-
sionality reduction is to find a proper projection ma-
trix U which projects xi to yi , yi ∈ Rl, l < m, so that
Y = UTX, and Y = [y1, . . . , yN ].

2.1 Discriminative Locality Alignment

In DLA algorithm, part optimization is first carried
out for each sample. Concretely, a local patch is built
for a given sample xi and its neighbors according to
class labels, and an objective function is designed to
characterize local discriminative information. Then,
DLA performs the whole alignment to integrate all
part optimizations to form the global coordinate in
the projected low-dimensional subspace[6, 7].

2.2 Adaptive Discriminative Locality Alignment

Although DLA has effectively improved the recogni-
tion rate in SHCCR compared with LDA [5, 9], some
disadvantages still exist. (1) for each given sample

Figure 1. Similar samples with imaginary strokes
from the SCUT-COUCH2009.
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xi, its local patch is built by k1 nearest neighbors
from the same class and k2 nearest neighbors from
different classes. The recognition accuracy heavily
depends on the choice of parameters k1 and k2, and
the optimal parameter combination of k1 and k2
are very different for different similar character set.
(2) The weights of samples for different patches are
invariable among the samples with the same class
as xi or different classes from xi. To enhance the
DLA algorithm, we present an adaptive discriminative
locality alignment (ADLA). For a given training
dataset X = [x1, . . . , xN ], let nj denote the number
of samples in the jth class, and l(xi) denote the class
label of sample xi. In part optimization stage, for a
given sample xi, 1 ≤ i ≤ N , we choose ri samples with
class label l(xi), and denote them by xi1 , . . . , xiri .
In the proposed method, the number of samples is
proportional to the number of selected samples in
the same class, i.e., ri = ρnl(xi), ρ ∈ (0, 1). The
experiments shows that ρ = 0.95 is a good choice. For
each sample xj with the same class label as xi, we use

a weight ω
(s)
(i,j) to measure its importance in modeling

the patch, and it is evaluated by

ω
(s)
(i,j) =

1

1 + exp(−‖xi − xj‖) , l(xj) = l(xi), (1)

where ‖xi − xj‖ denote the Euclidean distance be-
tween two samples xi and xj . Finally, we rank the
weights of all the samples xj , l(xj) = l(xi), and the
ri samples with the largest weights are chosen to
modeling the patch corresponding to sample xi

According to Euclidean distance, for sample xi, its
nl(xi) − 1 nearest neighbors can be identified. Among
the neighbors, the samples with different class labels
are chosen to model the patch, and they are denoted
by xi1 , . . . , ximi

, here (0 ≤ mi ≤ ni − 1)). Their
corresponding weights are evaluated by

ω
(d)
(i,j) =

1

1 + exp(‖xi − xj‖) , l(xj) �= l(xi). (2)

Thus, the local patch for xi can be formulated
as Xi = [xi, xi1 , . . . , xiri , xi1 , . . . , ximi

], and the
corresponding patch in low dimensional space is
Yi = [yi, yi1 , . . . , yiri , yi1 , . . . , yimi

]. To make distances
between yi and its within-class samples very small and
distances between yi and its between-class samples as
large as possible in the projected space, the distance
between yi and its neighbor samples of a same class are
as small as possible, and the distance between yi and
its neighbor samples of different classes are as large as
possible,a possible objective function can be defined by

min
yi

ri∑
j=1

‖yi − yij‖2ω(s)
(i,j) − βi

mi∑
l=1

‖yi − yil‖2ω(d)
(i,l). (3)

It should be noted that the scaling factor βi varies
with different local patch, and in the proposed method
it is defined as

βi =
(
∑ri

k=1 ω
(s)
(i,k))/ri

(
∑mi

t=1 ω
(d)
(i,t))/mi

. (4)

Then, Eq.(3) can be rewritten as

min
yi

ri+mi∑
j=1

‖yFi{1} − yFi{j+1}‖2ω∗
(i,j) = min

Yi

tr(YiLiYi
T ),

ω∗
i = [

ri︷ ︸︸ ︷
ω
(s)
(i,1), . . . , ω

(s)
(i,ri)

,

mi︷ ︸︸ ︷
−βiω

(d)
(i,1), . . . ,−βiω

(d)
(i,mi)

],

(5)

where Fi = {i, i1, . . . , iri , i1, . . . , imi
} is the index set

of ith patch, Li =

⎡
⎢⎣
ri+mi∑
j=1

ω∗
(i,j) −ωi

∗T

−ωi
∗ diag(ωi

∗)

⎤
⎥⎦ .

After part optimization step, the global alignment
matrix L can be obtained by summing each Li

according to sample weights in a global coordinate,
and N part optimization functions can be unified
together as a whole one [7], i.e.,

min
Y

tr(Y LY T ). (6)

Further, let Y = UTX, we have

min
U

tr(UTXLXTU) s.t. UTU = I, (7)

where I is an l × l identity matrix. The solution of
U consists of l eigenvectors corresponding to the l
smallest eigenvalues of XLXT .

2.3 Kernel Adaptive Discriminative Locality
Alignment

In the proposed KADLA, a nonlinear mapping
Φ is used to map input data into a high dimen-
sional space, where training samples are denoted by
Φ(X) = [Φ(x1), . . . ,Φ(xN )]. U can be obtained by:

[Φ(X)LΦΦ(X)T ]U = λU. (8)

Different to ADLA, the βi is given as follows:

βi = p×
(
∑ri

k=1 ω
(s)
(i,k))/ri

(
∑mi

t=1 ω
(d)
(i,t))/mi

. (9)

where p ∈ [0, 1] is a regulator, it is empirically set
to 0.1 in the following experiments. Assuming that
Vi = [v(i,1), . . . , v(i,N)]

T and V = [V1, . . . , Vl] ∈ RN×l,
because any eigenvector may be described as a linear
combination of the observations in feature space, there
exist coefficients v(i,j), i = 1, . . . , l, j = 1, . . . , N , such
that

Ui =

N∑
j

v(i,j)Φ(xj)

=Φ(X)Vi,

(10)

then, U = Φ(X)V , Eq.(8) reduces to:

[Φ(X)LΦΦ(X)T ]Φ(X)V =λΦ(X)V

Φ(X)TΦ(X)LΦΦ(X)TΦ(X)V =λΦ(X)TΦ(X)V

KLΦKV =λKV,
(11)
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where LΦ is global alignment matrix in kernel space,
K is the gram matrix, its entry is given by a kernel
function K(xi, xj) = Φ(xi)

TΦ(xj). Then, V is com-
posed of l eigenvectors corresponding to the l smallest
eigenvalue of LΦK.

3 Experiments

We evaluate the proposed methods on some related
data from the SCUT-COUCH2009 dataset [4]. Con-
cretely, ten groups of similar characters used by [5, 9]
are used in our experiments, and they are all listed in
Table 1. Each Chinese character class has 188 samples.
Some examples of samples are shown in Figure 2.
In the expriments, all character data are first

preprocessed, including smoothing, dot density
equalization[11], interpolation[10], and then 8-
directional features[10] are extracted. We compare
the performance of ADLA, KADLA, DLA, KDLA
and LDA [8] in terms of recognition rate. To remove
redundant information and avoid singularity, for
all algorithms, PCA[12] projection is first carried
out. For LDA, the ni − C dimensions is retained
after the PCA computation, and 160 dimensions for
other methods. In our experiments, the Gaussian

kernel K(xi, xj) = exp(−‖xi−xj‖2

2σ2 ) are employed
by KDLA and KADLA, and empirically σ to 1.5.
All experiments are carried out using Matlab. The
KNN classifier is employed to classify data in low
dimensional space.

Table 1. The dataset used in our evaluation ex-
periments.

Group ID.
First

candidate
Similar

characters

SIM 1
SIM 2
SIM 3
SIM 4
SIM 5
SIM 6
SIM 7
SIM 8
SIM 9
SIM 10

3.1 Choices of parameters k1 and k2

For DLA and KDLA, parameters k1 and k2 can be
selected in the range of [1, ni] and [0, N −ni]. For each
character class, 35 samples are selected (i.e., ni = 35)
for training, and the remaining samples for testing.
The parameters β are empirically set to 0.15 and 0.01

Figure 2. Examples of handwritten samples cor-
responding to similar characters in Table 1.

for DLA and KDLA respectively, and the reduced di-
mension is fixed at 9. We use two groups of similar
characters, SIM 1 and SIM 2, to illustrate the influence
of choice of parameters k1 and k2 on the recognition for
DLA and KDLA. As shown in Figure 3, the black dots
are the peaks of recognition rate surface, and appar-
ently they are different for different groups of similar
characters. The experimental results show that DLA
and KDLA are very sensitive to the choice of parame-
ters. In practice, it is very difficult for DLA and KDLA
to find an optimal parameter combination. Compar-
atively, the proposed methods, ADLA and KADLA,
have only one parameter ρ, which is easily adjusted.
In the following experiments, two optimal values from
SIM 1 and SIM 2 are chosen for all other groups of
similar characters.

(a) DLA(SIM 1, k1 = 23, k2 = 70) (b) DLA(SIM 2, k1 = 15, k2 = 22)

(c) KDLA(SIM 1, k1 = 32, k2 = 28) (d) KDLA(SIM 2, k1 = 34, k2 = 5)

Figure 3. Recognition rate vs. parameters k1 and
k2 for DLA and KDLA.

3.2 Evaluation experiments

For five algorithms mentioned above, we compare their
performance on ten groups of similar Chinese charac-
ters and summarize the average recognition rates un-
der different reduced dimensions in Table 2. For each
algorithm and a given reduced dimension, the result
is obtained by averaging the recognition rates for ten
groups of similar characters. As shown in Figure 4 and
Table 2, when the reduced dimension is more than 9,
the recognition rates of different algorithm except LDA
keep very stable, and the solution does not exists due
to matrix singularity for LDA when RD = 11. The ex-
perimental results show that the performance of ADLA
and KADLA is a little better than that of DLA and
KDLA. The recognition performance of KDLA and
DLA varies with the different optimal parameters from
different groups of training samples, e.g., KDLA and
DLA with parameters combination (k1, k2)=(32, 28)
and (15, 22). The training process for DLA and KDLA
involves the search of optimal parameters, which is not
easily controlled. Although the results show the ker-
nel methods generally have higher accuracy than their
counterpart, they usually involve much higher time and
storage cost. For example, if the number of classes
is 3755, the dimension of features is 512, the number
of training samples for each class is 35, and each ele-
ment of feature vector needs 4-bytes, the storage cost is
3755× 35× 512× 4 = 269M bytes. Additionally, pro-
jection matrix and gram matrix also occupy a large
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volume of storage space. We also carry out the ex-
periments on a Core (TM) i-3470 3.20 GHz computer
with 4 GB memory to compare computation cost of
different algorithms. The number of candidate similar
characters is 10, and the computation time of 1530 test
samples for KDLA, KADLA, DLA and ADLA is 2.42s,
2.52s, 0.065s and 0.066s respectively. Obviously, kernel
trick brings more time cost. So ADLA is more suitable
for practical application than KDLA and KADLA.

Table 2. Average recognition rates (%) of ten
groups of similar characters. RD denotes reduced
dimension.

RD
Methods

LDA
DLA
(23,70)

DLA
(15,22)

ADLA
KDLA
(32,28)

KDLA
(34,5)

KAD
–LA

1 37.2 37.3 39.2 37.4 41.5 30.1 39.3
2 61.2 64.6 62.4 62.2 64.1 47.0 64.6
3 73.1 77.2 77.2 75.0 76.5 63.8 75.7
4 79.6 84.0 84.0 83.4 83.8 77.4 83.4
5 83.7 88.1 88.7 88.6 87.6 82.6 87.4
6 85.5 90.5 91.3 91.6 90.5 86.5 90.4
7 87.1 92.2 93.0 93.3 92.2 90.2 92.1
8 87.9 93.0 93.9 94.0 93.6 91.8 93.7
9 88.1 94.1 94.5 94.8 95.58 94.96 95.68
10 88.0 94.1 94.5 94.8 95.58 94.96 95.68
11 NaN 94.1 94.5 94.8 95.58 94.96 95.68

Figure 4. Average recognition rates (%) vs. re-
duced dimension.

4 Conclusions

In this paper, we present an improved DLA method
with few parameters, called adaptive discriminative lo-
cality alignment (ADLA). Compared with DLA, the
proposed method has better recognition rate. It inher-
its all the advantages of DLA and makes the training
process become easy due to no computation of parame-
ter optimization. The preliminary experimental results
demonstrate the effectiveness of ADLA and KADLA
for SHCCR in terms of recognition rate. For SHCCR,
ADLA is very competitive, since it has higher com-
putation efficiency and less memory demand than its
kernel version.

Acknowledgements

We would like to thank L.-W. Jin et. al. for help-
ing to providing the experimental data. This work

is supported by the National Science Foundation of
China (NSFC) under Grant no.61232013, no.61271434,
no.61175115.

References

[1] C.-L. Liu, S. Jaeger, M. Nakagawa: “Online recogni-
tion of Chinese characters: the state-of-the-art,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol.26,
no.2, pp.198–213, 2004.

[2] C.-L. Liu, K. Nakashima, H. Sako, H. Fujisawa: “Hand-
written digit recognition: investigation of normaliza-
tion and feature extraction techniques,” Pattern Recog-
nition vol.37, no.2, pp.265–279, 2004.

[3] F. Yin, Q.-F. Wang, X.-Y. Zhang, C.-L. Liu: “IC-
DAR 2013 Chinese handwriting recognition compe-
tition,” 2013 International Conference on Document
Analysis and Recognition, Washington, DC, Ameri-
can, pp.1464–1470, 2013.

[4] L.-W. Jin, Y. Gao, G. Liu, Y.-Y. Li,K. Ding: “SCUT-
COUCH2009 – a comprehensive online unconstrained
Chinese handwriting database and benchmark evalu-
ation,” International Journal on Document Analysis
and Recognition, vol.14, no.1 pp.53–64, 2010.

[5] D.-P. Tao, L.-Y Liang, L.-w. Jin, Y. Gao: “Simi-
lar Handwritten Chinese Character Recognition using
Discriminative Locality Alignment Manifold Learning,”
2011 International Conference on Document Analysis
and Recognition, Beijing, China, pp.1012-1061, 2011.

[6] T.-H. Zhang, D.-C. Tao, X.-L. Li, and J. Yang: “Patch
alignment for dimensionality reduction,” IEEE Trans-
actions on Knowledge and Data Engineering, vol.21,
no.9, pp.1299–1313, 2009.

[7] T.-H. Zhang, D.-C. Tao, J. Yang: “Discriminative lo-
cality alignment,” 10th European Conference on Com-
puter Vision, Marseille, France, pp.725–738, 2008.

[8] R. A. Fisher: “The Use of Multiple Measurements
in Taxonomic Problems,” Annals of Eugenics, Vol.7,
pp.179–188, 1936.

[9] D.-P. Tao, L.-Y. Liang, L.-W. Jin, Y. Gao: “Similar
handwritten Chinese character recognition by kernel
discriminative locality alignment,” Pattern Recogni-
tion Letters, vol.35, no.1, pp.186–194, 2014.

[10] Z.-L. Bai, Q. Huo: “A Study On the Use of 8-Directional
Features For Online Handwritten Chinese Character
Recognition,” 2011 International Conference on Docu-
ment Analysis and Recognition, Beijing, China, pp.232-
236, 2005 .

[11] Z.-L. Bai, Q. Huo: “A Study of Nonlinear Shape Nor-
malization for Online Handwritten Chinese Character
Recognition: Dot Density vs. Line Density Equaliza-
tion,” The 18th International Conference on Pattern
Recognition, Hong Kong, vol.2, pp.921-924, 2006.

[12] H. Hotelling: “Analysis of a complex of statistical vari-
ables into principal components,” Journal of Educa-
tional Psychology, vol.24, no.6, pp.417-441, 1933.

133


