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Abstract

We propose a new method for fitting an ellipse to a
point sequence extracted from an image. This method
can fit an ellipse if a point sequence consists of ellip-
tic arcs and non-elliptic arcs such as line segments.
Assuming that input points are spatially connected, we
iteratively select inlier points and fit an ellipse to them
by computing curvatures of the residual graph. By us-
ing simulated data and real images, we compare the
performance of our method with existing methods and
show that the accuracy and computation time of the
proposed method is superior to existing methods.

1 Introduction

A circular object in a scene is projected onto the im-
age plane as an ellipse, and we can compute its 3-D po-
sitions from that ellipse [4]. Therefore, detecting circles
and ellipses in images is the first step of many computer
vision applications including industrial robotic opera-
tions and autonomous navigation. For this purpose,
many methods for extracting elliptic arcs from an im-
age and for fitting an ellipse to the extracted elliptic
arcs are studied [5, 12, 14].

Many methods for fitting an ellipse to the obtained
elliptic arcs have been proposed in the past [8, 9, 1, 10,
6, 3, 13, 11]. However, most of them do not consider
the presence of non-elliptic arcs, which we call outliers,
in the input data.

Methods to deal with outliers are classified into two
approaches. The one approach removes outlier data
from the input data before applying an ellipse fitting
method. The other approach detects outliers in the
course of ellipse fitting. In the former approach, line
fitting based methods and curvature-based methods
exist. However, these methods cannot always remove
all outliers. In the latter approach, RANSAC is a well
known framework for dealing with outliers [2]. Yu et
al. [14] detected an outlier point sequence from fitting
errors and removed it from the input data. By iter-
atively applying the above procedure, they fitted an
ellipse to the remaining inliers.

In this paper, we propose a new method for si-
multaneously fitting an ellipse and detecting outliers.
Assuming that input data are a spatially connected
sequence of edge points, we segment it into partial
arcs by considering the ellipse fitting residuals and de-
tect inliers by computing the curvature of the residual
graph of each of the segmented arcs.

Our method has several advantages over exist-
ing methods. Our method involves iterations, but
the number of iterations is much less than those of
RANSAC and Yu’s method. Moreover, in contrast to
Yu’s method, our method has the possibility of fitting
a more accurate ellipse because outliers are removed

from the input data in each iteration step, meaning
that the number of data to fit an ellipse does not de-
crease by iterations.

2 Ellipse fitting

Curves represented by a quadratic equations in x
and y in the form

Ax2 + 2Bxy + Cy2 + 2f0(Dx+ Ey) + f2
0F = 0, (1)

are called conics, which include ellipses, parabolas, hy-
perbolas, and their degeneracies such as two lines [4].
Our task is to compute the coefficients A, ..., F so

that the ellipse of Eq. (1) passes through the detected
points (xα, yα), α = 1, ..., N , as closely as possible. In
Eq. (1), f0 is a constant that has the order of the im-
age size for stabilizing finite length numerical compu-
tation1. For a point sequence (xα, yα), α = 1, ..., N ,
we define 6-D vectors

ξα = (x2
α, 2xαyα, y

2
α, 2f0xα, 2f0yα, f

2
0 )

�,

θ = (A, B, C, D, E, F )�. (2)

The condition that (xα, yα) satisfies Eq. (1) is written
as

(ξα,θ) = 0, (3)

where (a, b) denotes the inner product of vectors a and
b. Since vector θ has scale indeterminacy, we normalize
it to unit norm: ‖θ‖ = 1.
Since Eq. (3) is not exactly satisfied in the presence

of noise, we compute a θ such that (ξα,θ) ≈ 0, α = 1,
..., N . For computing a θ that is close to its true value,
we need to consider the statistical properties of noise.
The standard model is to regard the noise in (xα, yα)
as an independent Gaussian random variable of mean 0
and standard deviation σ. Then, the covariance matrix
of the vector ξα has the form σ2V0[ξα], where

V0[ξα] = 4

⎛
⎜⎜⎜⎜⎜⎝

x2
α xαyα 0 f0xα 0 0

xαyα x2
α + y2

α xαyα f0yα f0xα 0
0 xαyα y2

α 0 f0yα 0
f0xα f0yα 0 f2

0 0 0
0 f0xα f0yα 0 f2

0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

(4)
which we call the normalized covariance matrix [6].

3 Proposed method

We assume that input data are a spatially connected
curve and that fitted ellipse intersects the curve at mul-
tiple points (Fig. 1(a)). We segment the input curve

1We set f0 = 600.
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(a) (b)

Figure 1. (a) An ellipse fitted to a point sequence
which includes non-elliptic arcs. A thin curve
is an input point sequence. (b) Fitting residual
graph. The horizontal axis shows the index of
the points, which starts from the point S to the
point T shown in (a). The vertical axis shows the
signed fitting residual whose sign is computed by
the left-hand side of Eq. (3).

into partial arcs at these intersection points. We com-
pute the variation of the tangent angle to the graph of
the fitting residual, which we simply call error curva-
ture in this paper, and judge if each arc is an inlier or
an outlier based on this error curvature. The principle
of our method is nearly equivalent to the curvature-
based outlier detection. However, our method is more
efficient, because our method computes the curvature
of the residual graph at only one point where the resid-
ual takes a maximum in each segmented arc.

In Fig. 1, the input point sequence is divided into
five partial arcs by the fitted ellipse. The residual value
of the arc PQ, which consists only of an elliptic arc,
smoothly changes around the peak value. On the other
hand, we can see that the residual graph has a peaky
shape over the arcs consisting of non-elliptic arcs.

Moreover, we can see that the arcs PP ′ and QQ′,
which are connected to the elliptic arc PQ, are also el-
liptic arcs. The points P ′ and Q′ are the peak points of
the partial arcs adjacent to the elliptic arc PQ. There-
fore, if we use not only the detected inlier arc but also
the adjacent arcs like the arcs PP ′ and QQ′ for ellipse
fitting, we can effectively fit a correct ellipse. The al-
gorithm of our method is summarized as follows:

1. Fit an ellipse to a point sequence by Fitzgibbon’s
method [3].

2. Compute the sign of left-hand side of Eq. (3) for
all the points and segment the point sequence into
partial arcs at the points across which the com-
puted sign changes.

3. For each segmented arc, detect the point where
the residual value takes a maximum and compute
its error curvature φ at this point.

4. Go to Step (a) if it is the first ellipse fitting, else
go to Step (b).

(a) Select an inlier arc which has the smallest
value φ among those arcs whose arc lengths
are longer than a threshold2 and adjacent
arcs if their end points correspond to the

2We set the threshold to be 5% of the number of input edge
points.

peak of the arc. Then, we fit an ellipse to
these selected arcs.

(b) Select the arcs whose error curvature φs are

smaller than a threshold φ̂3 and fit an ellipse
to them.

5. Repeat the procedures from Step 2 to Step 4 until
the number of inliers does not change.

As discussed before, if the selected arc is an elliptic
arc, the adjacent arcs are also elliptic arcs. Therefore,
we can effectively fit a correct ellipse if we use those
arcs. However, if we select a non-elliptic arc as an
inlier and add adjacent outlier arcs to fit an ellipse, we
cannot fit a correct ellipse.
For this reason, in the first iteration of our algorithm,

we select among the arcs that are sufficiently long the
one whose error curvature φ at its peak point is the
smallest. We regard it as a reliable inlier and extend it
to the adjacent partial arcs. After the first iteration, we
select all arcs whose error curvature φs are smaller than

a threshold φ̂. We do not extend those arcs, because
the adjacent arcs are non-elliptic arcs if the selected
inlier arcs approximately belong to the correct ellipse.
In the following sections, we describe details of our

method.

4 Division of the point sequence

The left-hand side of Eq. (3) at the point pα has
a different sign outside and inside the ellipse θ. Using
this fact, we can segment the input point sequence {pα}
into partial arcs at those point pα which have different
signs from their neighboring points.
Numerically, however, the value (ξα,θ) may not be

exactly zero even if the point pα lies on the fitted ellipse
θ; the points lying on the fitted ellipse may irregularly
change their signs, resulting, so these points may be
divided in very short arcs. To avoid this, we regard
those partial arcs whose fitting error is close to zero as
elliptic arcs, and judge that they are inlier arcs without
computing its curvature. We call such arcs tangent
arcs.

5 Inlier arc selection

After segmenting the point sequence, we detect the
point where the fitting error takes its maximum, and
compute its error curvature at this point in each seg-
mented arc. If the computed curvature is larger than
a threshold, we regard this arc as an outlier. The nu-
merical value of the curvature of the residual graph
depends on the scale of the horizontal axis of the resid-
ual graph. For example, if two point sequences have
the same shape and different scales, the curvatures of
their sequences have different values according to our
definition. Therefore, we normalize the scale of the
horizontal axis of the residual graph in the form

Qα = (
λemaxα

N
, eα)

�, (5)

where emax is the maximum of all ellipse fitting residu-
als and λ is a constant for normalization4. The fitting

3We set φ̂ = 80◦.
4We set λ=2.0.
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Figure 2. Error curvature φ of the peak point α∗
for a partial arc.

residual eα at a point pα is computed by

eα =

√
(ξα,θ)

(θ, V0[ξα]θ)
. (6)

If emax is extremely large, the normalization of Eq. (5)
may not work well. So, if emax is larger than a
threshold Emax

5, we replacing the value emax with the
threshold Emax in the normalization computation.

For M segmented arcs Rκ(i, j) ={Qβ |β =
i, ..., j},κ = 1, ...,M , we select inlier arcs by the fol-
lowing algorithm. Figure 2 summarizes the symbols
used in the following algorithm.

1. Let α∗ be the index of the point whose residual
takes its maximum in the arc Rκ. Here, if the
residual at the point pα∗ is smaller than a thresh-
old Emin

6, we regard the arc Rκ as a tangent arc
and finish this procedure.

2. Select two points whose indices β and γ are such
that

β = α∗ − d, γ = α∗ + d, d = (j − i)/r, (7)

where r7 is a constant for determining the distance
between the point α∗ and its adjacent points β and
γ. If both β and γ are out of Rκ, we update d to
d ← d− 1 until either of the two points are in the
arc Rκ.

3. Compute two vectors x(1) and x(2) according to

the following three rules. Here, x
(a)
b denotes the

b-th component of the vector x(a).

case a: Points Qβ and Qγ are both in the arc
Rκ.

x(1) = Qα∗ −Qβ , x
(2) = Qα∗ −Qγ . (8)

case b: Point Qβ is in the arc Rκ.

x(1) = Qα∗ −Qβ , x
(2) = (−x

(1)
1 , x

(1)
2 )�.

(9)

case c: Point Qγ is in the arc Rκ.

x(2) = Qα∗ −Qγ , x
(1) = (−x

(2)
1 , x

(2)
2 )�.

(10)

5We set Emax be (maximum image coordinates of the input
points)/3.

6We set Emin = 1.5
7We set r = 8.

4. Compute the error curvature φ by

φ = π − cos−1

(
(x(1),x(2))

||x(1)||||x(2)||
)
. (11)

5. Regard the arc Rκ as an inlier arc if φ is smaller

than the threshold φ̂.

We extend the selected inlier arc to its adjacent arcs
to generate a longer arc in the first round of ellipse
fitting. If the adjacent arc is a tangent arc, we test the
next adjacent arc and regard the non-tangent arc as
an inlier arc.

6 Experiment

6.1 Simulations

In order to confirm the effectiveness of the our
proposed method, we compared our method with
RANSAC and Yu’s method.
Figure 3 shows the experimental results. The thick

curve of Fig. 3(a) is the ellipse fitted by our method
and the thick line of Fig. 3(b) shows the selected in-
lier points for fitting the final ellipse (Fig. 3(a)). Fig-
ure 3(c), (d) and (e), (f) show the results of RANSAC
and Yu’s method, respectively, in the same manner as
Fig. 3(a) and (b). We applied three methods to differ-
ent variations of input data and Fig. 3(1), (2), and (3)
are three examples of them.
As we can see that our method could fit correct el-

lipses even if outliers are smoothly connected an ellip-
tic arc point sequence shown in Fig. 3(1). RANSAC
also fitted correct ellipses for Fig. 3(1) and (3). How-
ever, degenerated conic, which is two lines, is fitted for
Fig. 3(2). Yu’s method fitted a slightly deviated ellipse
from the correct one for Fig. 3(2) and a small ellipse
to a short arc for Fig. 3(3).
Table 1 shows the number of iterations and computa-

tion times for three methods. We used Intel Core 2Duo
3.00GHz×2 for the CPU with main memory 4GB and
Ubuntu 12.04 for the OS. For RANSAC, we stopped
if the solution did not change after 50 consecutive it-
erations and counted the mean total number of itera-
tions over 10 trials. From this result, the number of
iterations and the computation time of our method is
superior to RANSAC and Yu’s method.

6.2 Real image experiment

Figure 4(a) is an input image and Fig. 4(b) shows the
extracted edge points by canny operator. We removed
successive edge points whose lengths were shorter than
50 pixels. We selected edge points shown by thick
points in Fig. 4(b) and fitted an ellipse to them by three
methods, respectively. Figure 4(c), (d), and (e) are
the fitted ellipses by our method, RANSAC, and Yu’s
method, respectively. As we can see that RANSAC
and Yu’s method did not fit a correct ellipse. On the
other hand, the proposed method fitted a correct el-
lipse.
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(a) (b) (c) (d) (e) (f)

Figure 3. Ellipse fitting results. (a), (c) and (e) The thick curves are the fitted ellipses by our method,
RANSAC, and Yu’s method, respectively. (b) and (f) The thick points are the used points to fit those
ellipse. (d) The thick points are the detected inliers by RANSAC.

(a) (b) (c) (d) (e)

Figure 4. Real image experiment. (a) Input image. (b) Detected edge segments. (c) Our method. (d)
RANSAC. (e) Yu’s method.

Table 1. Comparison of computation time and
number of iterations: Computation time in msec
(number of iterations).

Our method RANSAC Yu’s method
(1) 8 (9) 42 (148) 600 (178)
(2) 4 (3) 64 (143) 424 (157)
(3) 8 (8) 68 (134) 48 (10)

7 Concluding remarks

We proposed a new method for fitting ellipse to a
point sequence which contains non-elliptic arcs. As-
suming that input points are a spatially connected se-
quence of edge points, we segment it to partial arcs
by considering the ellipse fitting residuals and detect
inlier arcs by computing the curvature of the residual
graph of each segmented arc.

By using simulated data and real images, we com-
pared the performance of our method with RANSAC
and Yu’s method and showed that the accuracy and
computation time of the proposed method were supe-
rior to existing methods.
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