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Abstract

In this article, we propose a transfer learning
method using the multi-prediction deep Boltzmann ma-
chine (MPDBM). In recent years, deep learning has
been widely used in many applications such as image
classification and object detection. However, it is hard
to apply a deep learning method to medical images be-
cause the deep learning method needs a large number of
training data to train the deep neural network. Medi-
cal image datasets such as X-ray CT image datasets do
not have enough training data because of privacy. In
this article, we propose a method that re-uses the net-
work trained on non-medical images (source domain)
to improve performance even if we have a small num-
ber of medical images (target domain). Our proposed
method firstly trains the deep neural network for solving
the source task using the MPDBM. Secondly, we eval-
uate the relation between the source domain and the
target domain. To evaluate the relation, we input the
target domain into the deep neural network trained on
the source domain. Then, we compute the histograms
based on the response of the output layer. After com-
puting the histograms, we select the variables of the
output layer corresponding to the target domain. Then,
we tune the parameters in such a way that the selected
variables respond as the outputs of the target domain.
In this article, we use the MNIST dataset as the source
domain and the lung dataset of the X-ray CT images
as the target domain. Experimental results show that
our proposed method can improve classification perfor-
mance.

1 Introduction

In recent years, deep learning (DL) has been widely
used in the fields of machine learning and pattern
recognition [1, 2, 3] because of its high recognition per-
formance. DL methods train the deep neural network
with a large number of parameters using a large num-
ber of training data. For example, Le et al. [2] train
1 billion parameters using 10 million training images,
and Krizhevsky et al. [3] train 60 million parameters
using 1.2 million training images.

On the other hand, medical image datasets such as
X-ray CT image datasets do not have enough data
for training the deep neural networks because of pri-
vacy. Therefore, many applications including com-
puter aided diagnosis (CAD) systems use conventional
sophisticated features [4, 5]. In this article, we pro-
pose a method that combines the DL and the transfer
learning method for a small number of training data. It
should be noted that the source domain (training data

of non-medical images) has a large number of data and
the target domain (training data of medical images)
has a small number of data.

Transfer learning is a method that re-uses knowledge
about the source domain to solve the target task [6].
For example, Oquab et al. [7] trained convolutional
neural network (CNN) with the ImageNet [8] as the
source domain. After training the CNN, they re-use
the parameters from the input layer on the mid-level
hidden layer. Then, they add a new layer and tune the
parameters using the target domain. In their article,
they show that their proposed method outperformed
other methods.

In this article, we propose a new transfer learning
method using DL. Figure 1 shows the outline of our
proposed method. Let xs (xt) be the sample of the
source (target) domain and let ys (yt) be the label
corresponding to xt (xt). Let Ds be the deep neural
network trained on the source domain {xs}, and let

w
(i→o)
s be the parameters from the input layer to the

output layer of Ds. Our proposed method firstly trains
the deep neural network Ds. Secondly, we evaluate the
relation between the source domain {xs} and the tar-
get domain {xt}. To evaluate the relation, we input
the target domain {xt} into Ds. Next, we compute
the histograms based on the response of the output
layer of Ds. After computing the histograms, we se-
lect the variables of the output layer that relate to the
target domain {xt}. Finally, we tune the parameters
in such a way that the selected variables respond as
the outputs of the target domain {xt}.
The difference between our proposed method and

Oquab’s method is the constraint. Oquab’s method
constrains the network by using the parameters

w
(i→m)
s , which denote the parameters from the in-

put layer to the mid-level hidden layer of Ds. On
the other hand, our proposed method constrains by

using all parameters w
(i→o)
s . This means that our

proposed method adds the constraint harder than
Oquab’s method. Therefore, we think that our pro-
posed method is suitable for avoiding overfitting when
you have a small scale target domain.

We evaluated our proposed method by using the
MNIST handwritten character dataset [9] as the source
domain and the lung dataset of the X-ray CT images
as the target domain. CT images contain many slices,
and the lung lesions are life-threatening. Thus, the
CAD system for lung lesion needs high classification
performance. We adopted the multi-prediction deep
Boltzmann machine (MPDBM) [10] as the DL method.
Multi-prediction means the procedure includes predic-
tion of any subset of the variables given the comple-
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Figure 1. Outline of our proposed method. We re-use all parameters trained on source domain. (A): training
deep neural network Ds, (B): evaluating relation between source domain and target domain, (C): tuning

w
(i→o)
s based on relation.

ment of that subset of variables [10]. The MPDBM
does not require greedy layerwise pretraining and out-
performs the standard DBM [10]. We experimentally
evaluated the relationship between the classification
rate and the number of layers T that transfer from
the source domain to the target domain. Experimen-
tal results showed that as the number of transferred
layers T becomes larger, the classification performance
becomes higher.

2 Proposed Method

In this article, we propose a method that combines
the MPDBM and the transfer learning. Our proposed
method re-uses all parameters to avoid overfitting.

2.1 Multi-Prediction Deep Boltzmann Machine

We train the deep Boltzmann machine using the fol-
lowing objective function [10],

J({(x, y)},w) = −
∑

(x,y)∈{x,y}

∑
i

log p̂∗(OSi ,w), (1)

where x is the input vector, y is the label, O = [x, y]�,
and w is the parameter. OSi

is the subset of the vari-

ables in O, and P̂ ∗(OSi ,w) is the following mean-field
approximation,

p̂∗(OSi ,w) = arg min
p̂

KL(p̂(OSi ,w)||p(OSi ,w|O−Si)),

(2)

where O−Si is the subset of the variables in O ex-
cept for OSi , and KL(.||.) is the KL-divergence.
p(OSi

,w|O−Si
) is the conditional probability distribu-

tion of p(O,w),

p(O,w) =
1

Ze
exp(−E(O,w)) (3)

where Ze is the partition function, and E(O,w) is the
energy function of the deep Boltzmann machines.
When we train the MPDBM, we use the mini-batch

stochastic gradient descent (SGD) on (1) [10].

2.2 Transfer Learning method using MPDBM

We explain the transfer learning method using the
MPDBM for a small scale target domain.
Let ws be the parameters trained on the source do-

main, let Ns and Nt be the number of labels of the
source and the target domain (Ns ≥ Nt), and let Ms

andMt be the number of training samples of the source
and the target domain (Ms � Mt).
Figure 1 shows the outline of our proposed method

and the algorithm is as follows:

1. Source task step:

(a) Initialize the parameters ws.

(b) Minimize J({(xs, ys)},ws).

2. Target task step:
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Table 1. Comparison of classification perfor-
mance with respect to method for selecting ap-
propriate variables V∗. v∗(1) = 1, v∗(2) = 2
represents variables selected based on (7), and
v∗(1) = 8, v∗(2) = 9 represents randomly selected
ones.

Performance (%)

v∗(1) = 8, v∗(2) = 9 97.5
v∗(1) = 1, v∗(2) = 2 99.6

Table 2. Comparison of classification perfor-
mance with respect to different structures.

Performance (%)

(784, 500, 500, 10) 99.6
(784, 500, 50, 10) 99.3

(a) Evaluate relation between the source domain
and the target domain.

(b) Select the appropriate variables of the output
layers that relate to the target domain.

(c) Minimize J({(xt, yt)},w(i→o)
s ).

At the source task step, we train Ds by using the
MPDBM described in section 2.1. Then, we re-use
all parameters of Ds for the target task. For re-using
all parameters, we evaluate the relation between the
source and target domain by computing the histograms
of each label. The histogram of l’s label is as fol-
lows (l = 1, 2, · · · , Nt):

pl(v) =
1

Zh
hl(v), (4)

where v (= v1, v2, · · · , vNs) is the output variable of
Ds, and Zh is the partition function, and

hl(v) =

Mt(l)∑
j=1

hl(v|xt,j), (5)

where Mt(l) is the number of samples of l’s label, and
hl(v|xt,j) is the output probability given xt,j . In this
article, we use the following approximation.

hl(v|xt,j) =

{
1, maxk vk,
0, otherwise,

(6)

where k = 1, 2, · · · , Ns.
By using pl(v), we select the appropriate variables

of each label V∗ = {v∗(l)|l = 1, 2, · · · , Nt} as follows:

V∗ = arg max
V

∑Nt

l=1 pl(v(l)),

s.t. v∗(l) �= v∗(l′), (l �= l′),
(7)

where V = {v(l)|l = 1, 2, · · · , Nt}.
After selecting V∗, we re-train Ds in such a way that

V∗ respond as the outputs of each label of the target. It
should be noted that the re-training of Ds corresponds
to the training of the deep neural network using the

initial parameters w
(i→o)
s .

3 Experimental Results

We evaluated the classification performance by us-
ing the MNIST handwritten character dataset [9] as

(A) MNIST

(B) Non-lesion

(C) Lesion

Figure 2. Examples of dataset.

Figure 3. The histograms pl(v) of Ds =
(784, 500, 500, 10).

the source domain and the lung dataset of the X-ray
CT images as the target domain. Figure 2 shows ex-
amples. Fig.(A) represents the examples of MNIST,
Fig.(B) represents non-lesion images, and Fig.(C) rep-
resents lesion images. The size of these images is 28×28
pixels, and the determination of lesion or non-lesion
was based on diagnosis by radiologists.
We used Ms = 60000 and Ns = 10 (character num-

ber from ”0” to ”9”), and Mt = 2000 and Nt = 2 (le-
sion or non-lesion). The number of samples of each
label is Ms(1) = Ms(2) = · · · = Ms(10) = 6000, and
Mt(1) = Mt(2) = 1000. l’s label of the source domain
represents the character ”l − 1”, 1’s label of the tar-
get domain represents ”lesion”, and 2’s label represents
”non-lesion”. As the test dataset, we used 140 images
of lesions and 140 images of non-lesions. These test
images are not included in the training dataset.

3.1 Effectiveness study of relation evaluation

Figure 3 shows the histograms of the relation. The
black bar represents the histogram of the lesions and
the gray bar represents the histogram of the non-
lesions. When we computed these histograms, we used
Ds with 784 units in the input layer, 500 units in the
first and the second hidden layer, and 10 units in the
output layer. In this article, Ds = (784, 500, 500, 10).
As shown in this figure, the highest relation of the le-
sion images is the character ”0” (v∗(1) = 1) and the
non-lesion images is the character ”1” (v∗(2) = 2).
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Figure 4. Histograms pl(v) of Ds =
(784, 500, 50, 10).

Table 3. Comparison of classification perfor-
mance with respect to transferring value T .

Performance (%)

T = 0 93.2
T = 1 98.2
T = 2 98.5
T = 2 (Adding a new layer) 98.9
T = 3 (Proposed) 99.6

Table 1 shows the comparison of the classification
performance with respect to the method for selecting
the appropriate variables V∗. v∗(1) = 1 and v∗(2) = 2
were selected by (7), and v∗(1) = 8 and v∗(2) = 9 were
selected randomly. As shown in this table, the result
based on (7) outperformed the randomly selected one.

Next, we compared the performance of the other
structures. Figure 4 and table 2 show the his-
tograms and the classification performance using Ds =
(784, 500, 50, 10). Compared to these results, the ap-
propriate variables v∗ and the classification perfor-
mance changed depending on Ds.

These results indicate the importance of evaluating
the relation between the source and the target domain.

3.2 Comparison study of classification perfor-
mance

Table 3 shows the comparison of the classification
performance with respect to the number of transferred
layers T . For example, T = 0 represents no trans-
fer ws, and T = 3 represents to transfer all param-
eters. It is noted that the deep neural network of
T = 0, T = 1, T = 2, and T = 3 trained on the
same hidden layers (Ds = (784, 500, 500, 10)). On the
other hand, T = 2 (adding a new layer) corresponds
to Oquab’s method [7], and we added 500 units to the
third layer (Ds = (784, 500, 500, 500, 10)).

Our proposed method outperformed other methods.
This implies that using all parameters trained for other
tasks will improve the classification performance of the
target task if you have a small-scale dataset.

4 Conclusion and Future Work

We propose a transfer learning method for a small
number of target samples. Firstly, we trained a deep
neural network Ds on the MNIST dataset. For train-
ing Ds, we used the multi-prediction deep Boltzmann

machine (MPDBM). Secondly, we computed the his-
tograms based on the response of the output layer of
Ds to evaluate the relation between the MNIST and
the medical image dataset. After computing the his-
tograms, we selected the appropriate variables of the
output layers that relate to the MNIST dataset. Then,
we tuned the parameters of Ds in such a way that the
selected variables respond as lesion or non-lesion.
Experimental results showed that selecting the vari-

ables based on the relation is effective, and our pro-
posed method outperformed the classification perfor-
mance. Future work is to compare the classification
performance by using other source domains and try to
use another method for training Ds.
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