
Mobile Real-Time Single Image 3D Corridor
Reconstruction Using J-Linkage

Greg Olmschenk1 Zhigang Zhu2

The Graduate Center and the City College
Of The City University of New York

1golmschenk@gradcenter.cuny.edu 2zhu@cs.ccny.cuny.edu

Abstract

We present a real-time algorithm that reconstructs
3D models of corridors using a mobile device. Con-
trary to previous approaches, our approach uses a non-
iterative, simultaneous model reconstruction method
called J-Linkage, which is both accurate in parameter
estimation and efficient in computation. We first use
J-Linkage to find the vanishing points in a scene, and
then show how the detected vanishing points along with
corresponding straight line edges can be used to accu-
rately determine the important features of a corridor,
such as doors. Finally, we show how this approach has
advantages in both speed and accuracy when compared
with previous solutions. Implementation in a mobile
computing device is carried out and experimental re-
sults are provided. The ability to model 3D representa-
tions of corridors in real-time on a mobile device can be
used in a range of applications including mobile apps to
help the visually impaired navigate, robotic navigation,
building inspection, and virtual tours.

1 Introduction

In the world built by humans, corridors are every-
where. As such, extracting corridor information is an
important step toward understanding many common
environments. Furthermore, mobile devices have be-
come ubiquitous. The ability to model 3D represen-
tations of corridors in real-time on a mobile device
makes possible applications ranging from mobile apps
to help the visually impaired navigate [1] to robots un-
derstanding their environment on the fly [2] to building
inspections [3].
The most common way to extract the information

about a corridor in computer vision is to use a range
sensor and perform the computations necessary to find
the walls of the corridor. These methods require rela-
tively expensive equipment, heavy processing, and high
energy consumption. This makes the method imprac-
tical for a robot that needs to move quickly, a wearable
system that needs to be built cheaply, or a visually im-
paired person who does not want to carry a laptop on
their back processing data all day. The most recent
relatively low-cost 3D sensors are the RGB-D sensors,
such as Microsoft Kinect and Asus Xtion Pro, however
their sensing ranges are quite limited (0.5 to 4 meters)
and are not particularly suitable for corridor detection.
We propose a high speed, low resource, long range, in-
expensive solution to these needs. Effective portable
corridor detection capabilities with nothing more than
a single consumer camera such as a webcam or the
cameras found on a smartphone.
The method proposed in this paper uses a varia-

tion of the non-iterative J-Linkage solution. In other

solutions, such as with Hough transformations, the ac-
curacy is limited by the parameterized of the voting
space and higher accuracies directly translate to more
cumbersome computation. Our solution does not use
a parameterized voting space and provides a fast and
accurate algorithm.
We have made the following three contributions in

this work. First, we leverage the J-Linkage approach
to be used in the detection and reconstruction of cor-
ridors. To our knowledge, our algorithm is the first
such J-Linkage based corridor detection. Second, we
provide a method in which the vanishing points and
corresponding straight line edges can be used to cre-
ate a 3D reconstruction of the corridor. Finally, we
implement the above methods as an iOS application
to provide a mobile real-time algorithm for corridor
reconstruction from a single image.

2 Related Work

Past research has been done on allowing a robot to
quickly move through a corridor [4]. However, these
methods rely on existing 3D maps of the corridors
which the robot matches its currently surroundings
with. The method described in this paper expands on
this by requiring no previous knowledge. Other fast
corridor detection options include those with power-
ful laser range sensors [2] leading to cumbersome and
expensive equipment being required.
The most detailed indoor modeling methods use

point cloud data gathered by 3D range sensors [5].
This 3D data can often be processed more quickly by
reducing the point clouds to surfaces [6]. Other range
methods use 2D laser range sensors to provide a faster,
less resource intensive approach [7]. These range sen-
sor methods use powerful hardware to extract precise
position data without the need to interpret information
based on a RGB image.
The use of a single RGB camera to detect doors

has been used extensively in existing research [8]. The
means used to find the frames of the doors in these
methods is similar to the extraction of corridors in our
approach.
Detection of corridor vanishing points to determine

the direction of the hallway has been extensively stud-
ied [9]. We build on these methods by utilizing and
creating a model of the hallway and its features such as
doors, turns, and corners of the hallways. Moreover we
offer a new method in vanishing point detection based
on a relatively recent approach called J-Linkage [10].
The J-Linkage approach is used to find multiple in-
stances of a model, and neither prior knowledge to
the number of models nor iterating across a param-
eter space is needed.

MVA2015 IAPR International Conference on Machine Vision Applications, May 18-22, 2015, Tokyo, JAPAN5-17

94

Figure 1. The approximation used for estimating
an edge’s preference set.

Specifically, we use the J-Linkage approach to deter-
mine vanishing points and the corresponding perspec-
tive features in the corridor scene. Our approach for
finding the vanishing points and corresponding straight
line edges is similar to that described in [11], but we
offer a real-time implementation on a mobile device.

3 Approach

In the following, we will describe the steps we use for
corridor modeling: vanishing point detection, corridor
feature detection, and their real-time implementation
in a mobile device. The 3D estimation and corridor
modeling is also described. For brevity, the initial de-
tection of 1-pixel wide straight line segments will not
be explained in detail, but the following is a summary.
Edge pixels are found using a standard Canny edge
detection followed by a non-maximum suppression re-
sulting in an edge map with edges 1 pixel thick. This
map then undergoes a contour extraction process to
determine connected components. We walk along each
contour and continuous sets of edge pixels on a contour
form candidates for straight line edges.

3.1 Vanishing Points From J-Linkage

Given a set of straight edges, we begin by generating
a set of possible mathematical models for vanishing
points. Specifically, two semi-randomly chosen straight
edges are used to generate a vanishing point model. An
edge ei is randomly selected as the first edge, then the
second edge ej will be selected based on proximity to
the first with the probability given by:

P (ei|ej) =
⎧⎨
⎩

1

Z
exp− ‖ej − ei‖2

σ2
, if ei �= ej

0, if ei = ej

(1)

where Z is a normalization constant and σ is heuris-
tically determined. The vanishing point model is de-
termined by calculating where the two edges would in-
tersect if they were infinite lines. A large number of
vanishing point models are generated in this way (in
our experiments, it was 500 models).
Next, the conceptual space is initialized. Every van-

ishing point model is compared with every straight
edge to test if the vanishing point is in the preference
set of that edge. Specifically, a line is considered which
runs through the centroid of the edge to the vanishing
point as is shown in Figure 1. The vanishing point is
said to be in the edge’s preference set if:

d < l · εf (2)

where d is the distance from the edge’s end point to the
line, l is the length of the edge, and εf is a threshold

constant. The preferences of each edge is then stored
in a binary matrix indexed by X and Y, with the Y-axis
representing the edges and the X-axis representing the
vanishing point models where a 1 corresponds with a
edge preference or a 0 for an edge non-preference.
Each row in the conceptual space is now taken to be

a cluster of edges, all of which are initially singletons.
The clusters are then merged based on their Jaccard
distance, given by:

dJ(A,B) =
|A ∪B| − |A ∩B|

|A ∪B| (3)

where an element is in a set if it is in the preference
set of the cluster. The two clusters which are closest
via their Jaccard distance will be merged and the re-
sulting cluster will be given a preference set that is the
intersection of the original two clusters. This process
is continued until all clusters have disjoint preference
sets (i.e. the Jaccard distance is 1).
After the merging, there will be many clusters which

contain only a few edges, corresponding to outliers, and
a few clusters which contain many edges, correspond-
ing to real vanishing points. These vanishing points
are then calculated based on the best fit point corre-
sponding to the edges in the related cluster. Tardif [11]
sums maximal edge end point distances to determine
the best fit vanishing point for a given cluster of edges.
For efficiency in mobile device computation, we instead
preform a RANSAC computation gathering a number
of vanishing point models proportional to the number
edges in the cluster. The models are then averaged to
determine the vanishing point for the cluster.

3.2 Manhattan Direction Vanishing Points

Features in the 3 Manhattan directions are strongly
represented and will be among the larger vanishing
point clusters. Denoting K as the 3× 3 intrinsic cam-
era parameter matrix and ω as the image of absolute
conic given by K−TK−1, a commonly used approach
for measuring K is:

vT
1 ωv2 = 0 (4)

where v1 and v2 are orthogonal vanishing points. How-
ever, when K is known, this equation can instead be
used to find orthogonal vanishing points. From this
we can determine the 3 Manhattan direction vanishing
points: edges running in the corridor direction, verti-
cal edges (such as door frames and other wall features),
and edges perpendicular to both (such as tiles on the
floor or light panels on the ceiling). The use of them
will be described in more detail below.

3.3 Corridor Features

We use the vanishing points obtained using J-
Linkage and corresponding straight edges we have ob-
tained to determine the important features of the hall-
way. The Manhattan direction vanishing point which
is closest to the center of the image is taken to be the
vanishing point whose parallel lines run along the axis
of the corridor. This assumption should always be true
given an image that actually presents itself as being of
a corridor.

95

Figure 2. The geometry of the 3D modeling

We begin by distinguishing between the floor, walls,
and ceiling in the image. The transitions between sur-
faces are prominent (usually among the most promi-
nent) edges. However, they can not be recognized
by their prominence alone. Therefore, we use the
wall and floor/ceiling features to make the distinc-
tion. Specifically, wall features will tend to run straight
up and down and will correspond to another of the 3
Manhattan-direction vanishing points. A similar case
exists for the floor and ceiling features (such as floor
tiles and light panels on the ceiling). Using these fea-
tures, we can determine which of the straight edges
corresponding to the corridor axis most accurately rep-
resents the end points of the wall and floor/ceiling fea-
tures. Formally, each edge is voted on as the transition
edge with a fitness given by:

Fei
=

∑
j

{
dj · wj , if pj is surface side

dj · wj · γ, if pj is counter-surface side

(5)
where dj is the distance from the point to the edge line
being fitted, γ is a weighting constant, and the minimal
fit is the accepted transition edge.
With the main surfaces defined, we determine the

position of interesting features. Most obviously, door
frames are both recognizable and user relevant. They
show up as properly spaced wall features running along
the wall’s Manhattan direction axis.
With all the detected corridor features, we are able

to obtain their 3D information using well established
methods [12] based on some reasonable assumptions,
such as the known camera height H (Figure 2). From
the vanishing point V of the corridor, the plane equa-
tion of the floor and the direction of the corridor can be
determined, and therefore the 3D coordinates (X,Y, Z)
of any point on the floor can be calculated. With this
3D information, local 3D models of separate views can
be integrated into a global corridor model.

4 Mobile Implementation

In our experiments, we used an iPhone 5s imple-
mentation developed in the Objective-C programming
language. In the following, we will analyze the time
complexity of each step, and provide some implement-
ing details to make the entire system run in real-time.
In the edge detection step, with ni and mi denoting

the image pixel dimensions, the Canny edge detection
uses O(nimilog(nimi)) time. Luckily, this process uses
OpenCV’s highly optimized image processing libraries.
The straight line extraction takes O(nc) time where nc

is the number of edge pixels. nc is typically only a tiny
fraction of ni · mi and so this processing takes very
little time.

Figure 3. Comparison of algorithm results with
ground truth data. Solid lines used trained im-
ages, dashed lines used untrained images. Yellow
is the % of surface pixels correctly labeled, blue is
the % of the true positive door pixels, and green
is the % of the true negative door pixels

In the vanishing point detection and selection step,
the J-Linkage clustering requires O(vme2n), where vm
is the number of generated vanishing point models and
en is the number of straight line edges. This is the most
computational intensive part of the program taking up
approximately 3/4 of the running time.

Determining which of the lines leading to the vanish-
ing point in the direction of the corridor (i.e. parallel
to the corridor axis), lc, are the transition lines from
the floor to the walls and from the walls to the ceiling
requires that each of the wall, ceiling, and floor feature
edges (i.e. parallel to the 2 remaining Manhattan di-
rection vanishing points), ef , give their weighted vote
on each of them resulting in O(lcef). Both the number
of lines (lc) and number of features (ef) are relatively
low (usually less than 100), so this process is fast.
The generation of a 3D model requires that each wall

feature edge of interest (with interest usually meaning
a strong edge) terminating at the ground plane, ew as
the total number, have its position along the corridor
calculated. This calculation then occurs in O(ew) time.
In the corridor feature detection step, the processing

time takes O(emlogem) time where em is the number of
feature edges attributed to the currently being consid-
ered Manhattan direction vanishing point. This comes
from the need to sort and then consider the edges in
order. However, this process is very fast as the num-
ber of feature edges for a given Manhattan direction is
small.

5 Experiments and Future Work

We have implemented the core algorithm of the cor-
ridor modeling on an iPhone 5s. In our current imple-
mentation, the average processing time on a 640x480
image is 0.18 second.
A genetic algorithm was used to train the detection

algorithm’s constants, such as the thresholds and con-
ceptual space model limits. The training used manu-
ally annotated images as ground truth for comparison.

96

Figure 4. Results on trained images.

Figure 5. Results on untrained images. The last
two show cases particularly difficult for our algo-
rithm.

The comparison with the ground truth for trained and
untrained images is shown in Figure 3. A snapshot of
the iPhone implementation is inlaid in Figure 3, where
the highlighted areas have been determined by the al-
gorithm with purple labeling the ceiling, yellow the
floor, and blue being doorways. Figure 4 shows the
3D measurement results for some trained cases while
Figure 5 shows untrained cases. The results show that
different transition regions are regularly accurate. The
doors detected are only slightly less accurate. In par-
ticular, while many doors may be missed, the doors
that are detected are usually reliable. This is the case
for both the trained and untrained images. For the
15 trained images, the average percentage of surface
pixels that are correctly labeled is 94.1% and, on av-
erage, 87.7% of doorway pixels are correctly detected,
whereas only 15.2% of the pixels are incorrectly la-
beled as doorway pixels. In comparison, the percent-
age of surface pixel labeling for the untrained images
decreases by about 8.8% on average, and due to the

missing of some doors, the percentage of true door pix-
els drops 16.4%, but 71.1% of the labeled door pixels
are still correct.
The last two of the images shown in Figure 5 are

specifically displayed because they show the areas
where the algorithm is weak. In one, the wall features
are such that they cause the algorithm to assume a
much higher floor than is real and end up being con-
sistently considered as doors even when they are not.
The other difficult image shows an image where a very
large portion of the corridor is occluded by people.
Nevertheless, the directions of the corridors are cor-
rectly detected, and in the latter case, an estimation
of a narrower corridor because of the multiple people
on both sides is a more safe estimation.
Future work will include using multiple 3D models

generated from our algorithm in succession to increase
the accuracy of the algorithms predictions and provide
additional information. We would also like to explore
the effectiveness of different feedback methods on a
mobile device in relaying the information here to a vi-
sually impaired user.

6 Acknowledgment

This work has been supported by the National
Science Foundation (Award # EFRI-1137172) and
PSC/CUNY Cycle 44 Research Program (Award #
66786-00 44).

References

[1] R. Manduchi and J. Coughlan. (computer) vision with-
out sight. Commun. ACM, 55:96–104, 2012.

[2] J. Forsberg, et al. Mobile robot navigation using the
range-weighted hough transform. Robotics Automa-
tion Magazine, 2:18–26, 1995.

[3] A. Paterson, et al. Building inspection: can computer
vision help? Automation in Construction, 7:13–20,
1997.

[4] A. Kosaka and J. Pan. Purdue experiments in model-
based vision for hallway navigation. IROS, 1995.

[5] H. Du, et al. Interactive 3d modeling of indoor envi-
ronments with a consumer depth camera. UbiComp,
pp 75-84, 2011.

[6] M. M. Nevado, et al. Obtaining 3d models of indoor
environments with a mobile robot by estimating local
surface directions. Robotics and Autonomous Systems,
48:131–143, 2004.

[7] J. Larsson, et al. Laser based corridor detection for
reactive navigation. Industrial Robot, 35:69–70, 2008.

[8] Y. Tian, et al. Computer vision-based door detection
for accessibility of unfamiliar environments to blind
persons. Computers Helping People with Special Needs,
pp 263-270, 2010.

[9] R. Ebrahimpour, et al. Vanishing point detection in
corridors: using hough transform and k-means clus-
tering. IET Computer Vision, 6:40–51, 2012.

[10] R. Toldo and A. Fusiello. Robust multiple structures
estimation with j-linkage. ECCV, 5302:537–547, 2008.

[11] J.-P. Tardif. Non-iterative approach for fast and accu-
rate vanishing point detection. ICCV, pp 1250-1257,
2009.

[12] A. Criminisi, et al. Single view metrology. Interna-
tional Journal of Computer Vision, 40:123–148, 2000.

97

