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Abstract

Obstacle detection on the road is a key function
for self-driving vehicles. A lot of research has focused
on detecting large obstacles such as cars and pedestri-
ans. Small obstacles can also be the source of seri-
ous accidents, especially at high speed. We present an
approach for detecting anomalies on the road using a
higher-order Boltzmann machine. As opposed to con-
ventional anomaly detectors the proposed system learns
to inpaint the road patches with commonly occurring
road features such as lane markings and expansion di-
viders, depending on the context. The system does not
consider these frequent road artifacts as anomalies and
significantly reduces the number of obstacle candidates.
We show initial empirical results for anomaly detection
with this new approach.

1 Introduction

The automotive industry is facing increasing pres-
sure from customers and governments to improve the
safety of cars. Although fully autonomous cars might
be the ultimate goal, partially autonomous or assisted
driving is more urgent and more likely to be com-
mercialized in the near future. The main objective of
these driving assistance systems will be to save lives by
avoiding accidents. We can already see many emerging
technologies to make the cars safer, such as pedestrian
detection [2] or collision warning system[8]. Current
technologies either use passive sensors (cameras) or ac-
tive sensors (millimeter-wave radar, LIDAR). Active
sensors can provide accurate measurements of large
obstacles at shorter distances. In spite of the expen-
sive price tags, the precision of such sensors decreases
quickly with the distance from the obstacle. On the
other hand, human perception only uses passive sens-
ing with cognition capability to detect small obstacles
at larger distances with high accuracy.

In this paper, we argue that a machine learn-
ing based solution that mimics human perception
should outperform the current technologies in detect-
ing anomalies on the road. While obstacles are 3D
objects an anomaly can also be a 2D marking on the
road. When looking at a scene our brain constantly
creates top-down predictions of what the next image
should be. Anomalies are detected by comparing these
predictions with the actual observations (see Egner et
al. [3]). We consider a similar approach by inpaint-
ing parts of the road and by comparing the predictions
with the actual observations to detect the anomalies.

Roads come in a variety of patterns and colors.
Learning a pattern on one kind of road might not work
for an other kind. Similarly, the road color changes
widely in different patches of the road and depending
on the light and weather conditions. In some coun-
tries different color road surfaces are used to mark bus

lanes, car pooling lanes, or dangerous turns. Similarly
the road markings might also vary between countries.
Never the less, the local features of the road, including
the lane markings, are basically consistent. This lo-
cal information can be used to inpaint missing parts of
the next frames. Some assumptions that are spatially
and temporally true for a video of the road taken by a
dashboard camera are:

• The car’s speed and direction do not change sig-
nificantly between two consecutive video frames.

• The road color, texture, and marking patterns
do not change abruptly between two consecutive
frames.

• An anomaly is easiest to detect when it is observed
for the first time.

The main contribution of this research is to exploit
these above assumptions to detect anomalies on high-
way video stream. The proposed approach exploits
both the local temporal and spatial information to in-
paint the regions of the next observed frame. To the
best of our knowledge, no one has tried this approach
for anomaly detection on roads.
The rest of the paper is organized as follows: Sec-

tion 2 clarifies the problems that our work seeks to
solve. We describe our proposed approach in Section 3.
Quantitative analysis is presented in Section 4. Com-
parisons with existing techniques are given in Section
5. Finally we conclude the paper in Section 6.

2 Background and Motivation

In addition to detecting pedestrians and other vehi-
cles on the road, smart cars will need to detect small
obstacles at a considerable distance for safe stop or
other corrective actions such as slowing down or chang-
ing lanes.
At normal highway driving speed, and even with a

deceleration of 0.8 G (the upper limit for safe decel-
eration of a car) it may take over 100 m to come to
a complete stop on a dry road. This does not include
the latency caused by the cognitive and decision mak-
ing processes. Even though the objective is to detect
a 3D solid obstacle, the current paper only focuses on
anomaly detections. It is intended as the first step
toward full obstacle detectors.
From computer vision perspective, a road is a se-

quence of locally repeating patterns. To explain the
motivation for the technique used in this research, as-
sume a hypothetical world where the road is always
empty, and where we have a system with an infinite
memory and computational power. Such a system
could remember all of the road scenes it has ever seen.
In such a world the problem of detecting anomalies on
the road is simple. The system could segment the road
out of the image and find the closest match (nearest
neighbor) in the previously observed images. The re-
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Figure 1. Image transformation hn is a function
of f(xn, yn). The same transformation hn can
be used to inpaint the unknown region y′n+1 =
(xn+1, hn). The anomaly can be detected by
comparing the inpainted region y′n+1 and the ac-
tual observation yn+1.

trieved image would then be matched with the current
observation to find any anomalies.

In reality, we don’t have an infinite memory and
computational capability. However, with a few real-
istic assumptions about the road and vehicle motion
useful information can be inferred from a limited num-
ber of previously seen frames. Since the patterns of
lane markings are usually consistent in two consecu-
tive video frames, they can be learned by using the
current frame and applied to the next frame to inpaint
the road. This inpainting can be compared to the ac-
tual observation to find any anomalies on the road.
Compared with a simple anomaly detection technique,
the presented approach learns the commonly occurring
structures on the road and does not consider them
as anomalies. This significantly reduces the number
of false positives. In addition, since the approach is
based only on local information, it is robust to differ-
ent weather and lighting conditions. Figure 1 is an
abstract representation of the process.

3 Structural Scene Inpainting

The core idea behind this research is to learn the in-
painting of the frequent road patterns. Since the pat-
terns on the road keep repeating the transformations
required to inpaint a part of the pattern can either
be acquired from the current image frame or from the
previously observed frames. The inpainted predictions
can then be compared with the actual observations to
find potential anomalies on the road.

The over simplified concept shown in Figure 1 is not
feasible due to the limited learning resources. In this
research we use patches of the shape shown in Figure 2-
a. The region y is treated as the unknown region while
the surrounding area x is used as the known context.
There is a high probability that the last few observed
frames have shown similar structure (e.g. discontinu-
ous lane markings in the middle or a continuous mark-
ing on the side of the road). It is safe to assume that
the spacing between the lane markings will stay con-
stant for many frames and will not change abruptly.
We argue that instead of defining global rules for the

lane markings and other markings that commonly oc-
cur on the road, it is better to learn them from short-
term memory.
Although various techniques can be applied to in-

paint the missing part of an image we employ a higher-
order Boltzmann machine (also known as gated Boltz-
mann machine [5]) to learn the transformation between
x and y. The abstract structure of the network is
shown in Figure 2-b.

3.1 Offline Learning

To capture the correlations between input x, output
y, and the hidden variables h, Memisevic et al. [5]
suggests using the following three-way energy function
to define the conditional distribution:

−E(y, h;x) =
∑

ijk

wijkxiyjhk (1)

where i, j, and k index the input, output, and hid-
den units. The biases are not shown in this equation.
Wijk is a three-dimensional tensor whose dimensions
increase cubically with the increase in the size of the
input, output, or hidden units. Learning such a large
number of weights make the learning slow and ineffi-
cient. In another paper, Memisevic et al. [6] proposed
solving this problem by factoring the interaction ten-
sor. This technique is known as Factored Gated Boltz-
mann Machine (FGBM). In FGBM the three-way en-
ergy of a joint configuration of the visible and hidden
units can be defined as:

−E(y, h;x) =

F∑

f=1

∑

ijk

xiyjhkw
x
ifw

y
jfw

h
kf (2)

where f indexes the factors. In other words, the
I×J×K parameter tensor is replaced by three matri-
ces with sizes I×F , J×F , and K×F . If the number
of factors is comparable to the number of units in the
visible and hidden groups, the factorization reduces the
number of parameters from O(N3) to O(N2). Using
this factorization, the weight wijk in Equation 1 is im-
plemented as

∑
f w

x
ifw

y
jfw

h
kf . The bias terms remain

unchanged. This factored higher-order Boltzmann ma-
chine allows efficient learning of the transformations
between larger image patches.

Figure 2. (a) Shape of the mask for x (known
area) and y (unknown area) used for offline train-
ing and online testing. (b) Represents the struc-
ture of a higher-order Boltzmann machine. The
x, y, and h are fully connected to each other by
using a 3 dimensional weight matrix w.
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Unsupervised learning is used to learn the commonly
occurring shapes on the road. The patches for the
training data are extracted by sliding a mask on the
sample images (Figure 2-a).

3.2 Online Inpainting

After the offline learning of the weight tensors
wx

if , w
y
jf , andw

h
kf , the system can be used to inpaint

missing parts of a road image. To infer the missing
part y of an image, x and h must be known. While x is
simply the surrounding region around y, there are sev-
eral possible sources to compute h. Generally speaking
h can either be obtained using the current image or
previous images from memory.

When the current image is used to obtain the trans-
formation p(hn|yn;xn) (n represents the video frame
number) and then reconstruct the output p(yn|hn;xn),
the system behaves like an autoencoder that tries to
generate an image by reconstructing the patch using
the learned features of the image. However, in this
case if the anomaly covers a significant part of yn the
system will encode the wrong transformation and will
ultimately inpaint an incorrect result.

Another more practical scenario is to keep a short
term memory of M previously observed frames. In the
nth frame we can run the mask over the region of in-
terest. The xn of the nth image frame is matched with
the memory image database to find the most similar
image xs and its respective ys. In the next step the
transformation is inferred p(hs|ys;xs). The estimated
transformation hs can then be used to inpaint the de-
sired region of the nth frame (p(yn|hs;xn)).

As mentioned in the introduction, the anomaly is
easiest to detect when it is observed for the first time.
Therefore the patch that contains an anomaly with
a certain probability Po should not be stored in the
short-term image memory.

4 Results

For the training of the system we used 100,000
unique samples (with each one being a x,y pair) ex-
tracted from 2,000 VGA images. All 2,000 images rep-
resented empty roads with no vehicles. A mask was
applied to the original images to remove the non-road
regions. The size of x is 50 × 50, while the size of y
is 15 × 15. The number of factors in our FGBM was
200 and the size of hidden layer (transformation layer)
was also 200. The offline training was performed un-
til the weights converged and did not change for 20
consecutive epochs. With this termination criteria the
training stopped after 243 epochs.

In the first experiment, we compare the quality of
inpainting by comparing it with the nearest-neighbor
approach. As discussed in the introduction, a system
with infinite memory and computational capabilities
can reconstruct a patch by just recalling the nearest
neighbor in the memory. However, the proposed sys-
tem should be able to reconstruct the frequently oc-
curring road patterns by using a very small amount
of memory. The comparison of the proposed approach
with nearest-neighbor approach is given in Figure 3.
The upper-left image in the figure shows the original
road image (black represents the road while white rep-
resents a lane marking or expansion divider). We can

Figure 3. (upper-left) A sample of original out-
put patches Y . (upper-right) Reconstructed out-
put patches by using FGBM with a memory of
only 1 previous image - MSE=0.915. (lower-
left) Nearest-neighbor in the last 20 images -
MSE=4.524. (lower-right) Reconstruction er-
ror for FRGBM and nearest neighbor approach.
Even with a memory of 300 previous images the
nearest neighbor approach cannot compete with
reconstruction using only 2 previous frames by
FGBM.

see a comparison of the proposed technique with the
nearest-neighbor approach. The Mean Square Error
(MSE) for reconstructing the patterns is 0.915 for the
proposed approach when only the previous image is
kept in memory while with nearest-neighbors even us-
ing last 20 images gives MSE of 4.524. The plot in the
lower-right corner shows MSE comparisons for the two
approaches. Even with a memory of 300 previous im-
ages the nearest-neighbor approach’s performance does
not come close to the presented approach.

Figure 4. Left column shows the original image
of a road scene. Right column images show the
difference between the original and the recon-
structed (inpainted) image.

Some of the results obtained by the technique are
shown in Figure 4. In this case the proposed system is
used as an autoencoder where the same frame is used
to determine the transformation hn between xn and
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yn. The encoded transformation hn is used to inpaint
y′n. The absolute difference |yn− y′n| is then computed
to highlight the anomalies. The right column side im-
ages of Figure 4 show in black the regions detected as
road. Note that the lane markings, which are a stan-
dard feature of the road, are reconstructed and there-
fore appears black in the difference image. In contrast,
the text written on the road which is relatively rare,
was not reconstructed properly and appears white in
the difference image.

Figure 5 shows another snapshot from a video with
a small dummy obstacle added to the image. For this
experiment we used the short-term memory of size one.
This means the system only stores the last observed im-
age to find the similarity transformation hs. As shown,
the system is able to detect the obstacle on the road as
an anomaly. Note that the common road features like
lane markings are not detected as anomalies. Some
other noise that is produced by the patch reconstruc-
tion is removed by simple erosion and dilation opera-
tion.

Figure 5. An Region of Interest (ROI) is defined
for anomaly detection. The anomaly is detected
and is shown by a dotted bounding box in the
lower image.

5 Related Work

Significant amounts of work have been done in the
field of obstacle detection on roads. Although active
sensors are widely used for obstacle detection, such
devices are often expensive and have very low reso-
lutions at long distances, making them impractical for
the problem discussed in this paper. In the passive
sensors the obstacle detection problem have been re-
searched for over a decade. Several techniques propose
using stereo or Structure From Motion (SFM) to find a
kind of homography transform between two images and
then finding the anomalies by warping one image and
comparing it with the other. T. William et al. [7] uses
a multi-baseline stereo technique and claims to detect
14 cm obstacles at a distance of over 100 m. Similarly,
H. Kyutoku et al. [4] compares the previous frame and
the present frame to find any anomalies on the road.
Although, such techniques should theoretically detect

any obstacle on the road, in practice, these techniques
require a very clean road environment with an accu-
rate point matching for image warping and disparity
computations. This is not practical for point matching
since the real world images can be very noisy.
Many other systems commonly used in the Advanced

Drivers Assistance System (ADAS) use a monocular
camera [8] or stereo-based vision [1] to detect large ob-
stacles very robustly, but fail to detect small obstacles
at medium or long distance.

6 Conclusions

In this paper we present a technique that can inpaint
lane markings and other commonly occurring features
of the road. When compared with the actual observa-
tions, this technique can be used to detect anomalies
on the road. During the offline learning stage the sys-
tem learns the shapes of common structures on the
road. The system cannot inpaint the anomalies that
may occur on the road, hence considerably reducing
the candidates for the anomalies.
One very obvious limitation of the system is that

it will fail to detect an anomaly that looks like a fre-
quently occurring road feature. In such a case, con-
textual information about the road must be used to
identify anomalies. Although the proposed technique
would work on most roads, highway environments are
better maintained with fewer obstacles, hence making
them a better choice for initial testing.

References

[1] Subaru eyesight: Driver assist technology -
http://www.subaru.com/engineering/eyesight.html.

[2] P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedes-
trian detection: An evaluation of the state of the art.
Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, 34(4):743–761, April 2012.

[3] Tobias Egner, Jim M. Monti, and Christopher Sum-
merfield. Expectation and surprise determine neural
population responses in the ventral visual stream. The
Journal of Neuroscience, 30(49), December 2010.

[4] Haruya Kyutoku, Daisuke Deguchi, Tomokazu Taka-
hashi, Yoshito Mekada, Ichiro Ide, and Hiroshi Murase.
On-road obstacle detection by comparing present and
past in-vehicle camera images. In Conference on Ma-
chine Vision Applications, Nara, Japan, June 2011.

[5] Roland Memisevic and Geoffrey Hinton. Unsupervised
learning of image transformations. In IEEE Conference
on Computer Vision and Pattern Recognition, 2007.

[6] Roland Memisevic and Geoffrey E. Hinton. Learning to
represent spatial transformations with factored higher-
order boltzmann machines. Neural Computation, 22(6),
June 2010.

[7] Todd Williamson and Charles Thorpe. Detection of
small obstacles at long range using multibaseline stereo.
In IEEE International Conference on Intelligent Vehi-
cles, 1998.

[8] David B Yoffie. Mobileye: The future of driverless cars.
Harvard Business School Case 715-421, October 2014.

44


