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Abstract 

The problem of content based image retrieval is to 
narrow down the gap between low-level image features 
and high-level semantic concepts. In this paper, a biased 
discriminant analysis with feature line embedding 
(FLE-BDA) is proposed for performance enhancement in 
the relevance feedback scheme. We try to maximize the 
margin between relevant and irrelevant samples at local 
neighborhoods. In the reduced subspace, relevant images 
would be closed as possible; while irrelevant samples 
are far away from relevant samples. The evaluation re-
sults on dataset SIMPLIcity are given to show the 
performance of the proposed method. 

1. Introduction 

The main approach in Content based image retrieval 
(CBIR) is to extract low-level visual features from images, 
and calculate the similarity degrees between them to find 
the most similar ones. The image contents are usually 
characterized by various low-level visual features, e.g., 
colors, shapes, textures, etc. However, it is very hard to 
represent human high-level semantic concept by 
low-level visual image features. To narrow down this gap 
in CBIR, extracting meaningful information from high 
dimensional feature spaces is proposed in [1]. Relevance 
feedback (RF)[2-3] also bridges the semantic gap be-
tween low-level visual features and high-level semantic 
concepts for performance improvement. In the past dec-
ades, RF based methods are classified into two categories: 
query movement and biased subspace learning (BSL). In 
the early stage, query movement and re-weighting tech-
niques were developed. Relevant and irrelevant samples 
labeled from users give the new weights of features[2] or 
revise the query features to obtain a new representation[3]. 
In the second category, biased subspace learning methods 

are alike; each negative example is negative in its own 
way. [4]
maximum margin projection (MMP)[5], biased maximum 
margin analysis (BMMA)[6], and biased discriminant 
analysis (BDA)[7]. 

The biased discriminant analysis[7] which is extended 
from MFA[10]. Another alternative criterion is designed 
based on maximum margin criterion (MMC). He et al. [5] 
proposed a semi-supervised method extended from local 
preserving projection [8] for dimensionality reduction, 
called MMP. The MMP algorithm maximizes the margin 

between relevant and irrelevant samples at local neigh-
borhoods. Zhang et al. [6] propose a BMMA and a 
semi-supervised BMMA (SemiBMMA) for SVM-based 
RF schemes. All their methods are operated on the graph 
embedding framework to extract the intrinsic geometry 
structure. They aim to the same goals: maximize the 
margin between relevant and irrelevant samples at local 
neighborhoods using the manifold-learning approach. 

In this paper, we propose a FLE-BDA method, in 
which point to line metric is embedded into the trans-
formation. Feature lines [9] are considered as the linear 
combination of image features in feature spaces. This 
subspace learning method discovers the intrinsic mani-
fold structure from feedback data. The contribution of 
FLE-BDA method is to maximize the margin between 
query sample and irrelevant feature lines, and minimize 
the margin between query sample and relevant feature 
lines. In the RF scheme, users label the relevant or irrel-
evant samples for subspace learning. The within-class 
and between-class weighting graphs are constructed from 

 

2. The proposed method 

In this section, the proposed subspace learning algo-
rithm FLE-BDA constructs the relationship of points to 
feature lines. Positive and negative labels are given from 

samples are clustered together; while the query sample is 
separated from the negative samples by a maximum 
margin.  

2.1 The BDA objective function for dimen-
sionality reduction 

In [10], the geometric structures of feature lines are 

shown in Fig. 1. Sample points 
i

x , 
u

x , and 
v

x  repre-

sent the relevant images Those 

composed of blue sky, sand, and 

buildings. Their features are partially overlapped. For 

example, the color features in images 
i

x  and ux  are 

similar, and the textural features of sand in image ix  

and vx  are alike. The feature line ),( vu xxL is consid-

ered to be the approximation of two images in feature 

space. The projection point ivu xP ,  is composed of the 

linear combination of feature points
u

x and
v

x . 

Given m  sample points ),......,,( 21 mxxxX mn
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collected from interaction, the first m  samples 

represent the positive (relevant) sample with a label 

1)( ixl , mi1 ; the next m  samples represent 

the negative (irrelevant) samples with a label 1)( ixl , 

mmim 1 . Similar to the approach in [5], two 

graphs, a within-class graph wG and a between-class 

graph bG , are constructed from the positive and nega-

tive samples, respectively. They are also called the 

intrinsic and penalty graphs in the graph embedding 

framework[6]. The discriminant vector ivui xPxV ,  

is used to construct the within-class and between-class 

scatters. Both scatters with point to line embedding met-

ric characterize the local geometry relationship of data in 

manifold structure. 

 
Figure 1. The geometric structure of nearest feature line. 

 

Let m  points be the corresponding points in the re-

duced subspace myyyY .,,........., 21 . Now, the BDA 

with feature line embedding transforms the original 

space into the reduced subspace in which positive sam-

ples are clustered together, while negative samples are 

separated from positive sample by a maximum margin 

after the projection. The within-class scatter minimiza-

tion and the between-class scatter maximization are both 

taken into account as follows: 
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where the )( i

w

uv yP is the within-class projection point on 

the feature line ),( vu yyL for point 
i

y  after mapping into 

the new feature space. The weight i

w

u,v yZ  (being 0 or 

1) represents connectivity relationship from point
i

y to a 

feature line ),( vu yyL  that passes through two points
u

y

and
v

y . On the other hand )( i

b

uv yP  is the between-class 

projection point. 
In the reduced subspace, the objective function in (1) 

aims to minimize the distances of within-class graph to 
let all relevant points in the new subspace are close as 
possible, while the objective function in (2) attempts to 
maximize the distance of between-class graph to separate 
the query sample from irrelevant points far apart by a 
maximum margin. 

2.2 Optimal linear embedding 

In this section, the subspace learning algorithm 
FLE-BDA solves the objective functions (1) and (2) 
simultaneously. It considers the local geometric struc-
tures from points to feature lines. Let A be a projection 
matrix which projects vectors in the original space into a 
reduced subspace by XAY T . Some simple algebraic 
steps are applied to reduce the objective functions in (1) 
and (2) as follows: 
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From the consequences in [10], the discriminant vector 

V  is represented as j j

w

jii yMy , , in which two val-

ues in the ith row in matrix wM  are set as 
uv

w

ui
tM

,,
, 

vu

w

vi
tM

,,
, )()/()()(, vu

T

vuvu

T

uivu yyyyyyyyt , 

and 1
,, vuuv

tt . The other values in the ith row are set as 

zero. The mean squared distance in Eq. (5) for all rele-

vant/irrelevant points to their NFLs is next obtained as 

AXXLAtr TwT
, in which 

www WDL , and matrix 
wD  is a matrix of the column sums of the similarity ma-

trix 
wW . Matrix 

wW  is defined as 

ji

wTwTwww

ji
MMMMW

,,  when ji , and 

zero otherwise; j

w

ji
M 1

,  from the consequences of 

Yan et al. [11]. Matrix wL  in Eq. (5) is represented as a 

Laplacian matrix. Similar to Eq. (5), the objective func-

tion (2) is reduced to Eq. (6). According to the constraint 

of Laplacian matrix, we define as follows: 

11 AXXDADYY TwTT . (7) 

Therefore, the objective function in (1) is written as: 

AXXWA TwT

A
1min . (8) 

Equivalently, 

AXXWA TwT

A
max  (9) 
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The same as the objective function in (2) is written as: 

AXXLA TbT

A
max  (10) 

Two objective functions in (1) and (2) are fused: 

AXWXA TwbT

AXXDA

A
TwT

1maxarg

1

, 
(11) 

where is a weighted value for the fusion of with-
in-class and between-class graphs, and 10 . Value 

 is set to be 0.05 in the experiments. To maximize 
(11), the solution is solved from the general eigenvalue 
problem. The optimal transformation matrix is obtained 
from the eigenvectors with the corresponding d  largest 
eigenvalues. Every original feature vector is mapped into 
the reduced subspace by 

i

T

ii
xAyx . 

3. The CBIR System Using Algorithm 
FLE-BDA 

The proposed BDA with feature line embedding 
method is applied on the CBIR systems. Specifically, in 
the implementation, we have investigated five low-level 
features with color and texture descriptors from MPEG-7 
standard are investigated for image content representa-
tion. 

3.1  Low-level feature for image representation 

Feature extraction is the crucial step in CBIR. Images 
are usually represented by low-level visual features such 
as color, texture, and shape. In this study, three color 
descriptors (color layout descriptor(CLD), color structure 
descriptor(CSD), and scalable color descriptor(SCD)) and 
two textural descriptors (homogeneous texture de-
scriptor(HTD) and edge histogram descriptor(EHD)) are 
adopted for image representation. All of them are in-
cluded in the MPEG-7 standard. Five low-level visual 
features are catenated to generate a new vector of length 
718. The global and local features are both integrated in 
this new vector for representing the low-level semantic 
contents.  

3.2 The relevance feedback scheme 

used to calculate the within-class and between-class 

scatters. Two labels are assigned to the top rank images 

or irrelevant labels represent use

similar textures or colors. The within-class scatter is cal-

culated from the image samples with positive labels, 

while the between class scatter is calculated from those 

with negative labels. Based on these assigned labels, the 

within-class and between class weighted graphs are con-

structed for maximizing the margin of relevant and 

irrelevant samples. Let A  be the optimal transformation 

matrix, the gallery and query samples in the low dimen-

sional space are generated by the transformation 

i

T

i xAy  and qAq Tnew
, respectively.  The new 

distance between iy  and 
newq  in the subspace is 

computed in (10). The RF scheme effectively finds the 

semantic and geometrical structures of images from users  

preference. It is favorable to connect low-level image 

features and high-level semantic concepts using users  

feedbacks. 

.               

,

qxAAqx

qyqyqydist

i

TT

i

new

i

Tnew

ii
 (12) 

4. Experimental Results 

In this section, some experimental results are con-
ducted to evaluate the performance of the proposed 
method. The relevance feedback driven image retrieval is 
evaluated by a benchmark dataset SIMPLIcity[12] which 
was accessed from the website: http://www.wang.ist. 
psu.edu/docs/related. This SIMPLIcity dataset is com-
posed of one thousand images of ten categories in 256 by 
384 or 384 by 256 pixels. All images in this dataset are 
manually classified and labeled with the corresponding 
class IDs. Then, the proposed FLE-BDA method gener-
ates 
The query sample in the original space is projected into 
the subspace by the learned transformation in which the 
query sample and relevant samples are clustered togeth-
er; while the query sample is separated from the 
irrelevant samples by a maximum margin. 

4.1 Experimental design 

In [5], the precision scope curves and the precision 
rates are adopted to be the performance indices of the 
CBIR algorithms. From the definition, the preci-
sion-scope is specified as the number of top-ranked 
images N which is presented to the user, and the preci-
sion rate is the ratio of the number of relevant images 
presented to the user in the scope N. The precision-scope 
curve represents the precision with various scopes and 
gives the overall performance of algorithms. On the oth-
er hand, the precision rate emphasizes the precision at a 
specified scope. According to the consequences in [5], 
the top 20 images shown on a screen are the suitable 
layout for IR systems. Therefore, the number of top rank 
images is set to be 20, i.e., N = 20, the number of la-
belled images for users. In the experiment, five-fold 
cross validation is used to evaluate the algorithms. At 
each run, one subset is selected to be the query set, and 
the other four subsets are used to be the gallery images 
for retrieval. The precision-scope curves and precision 
rates are calculated by averaging the results from the 
five-fold cross validation. 

4.2  The results on dataset SIMPLIcity 

In this section, three state-of-the-art subspace learning 
algorithms, LDA, MMP[5] and LPP[8], are compared to 
demonstrate the effectiveness of the proposed method. 
The fused features of length 718 are extracted from the 
images in dataset SIMPLIcity, i.e., three color features 
and two textural features. Since the dimension of fea-
tures is very high, PCA was performed to find the best 
representation for avoiding the small-sample-size prob-
lem. The features are reduced to the same dimension by 
all the compared algorithms. In the experiment, the fea-

3



tures are reduced to the new vectors of length 38 by PCA 
for preserving more than 99% information. In addition, 
the final feature dimensions of algorithm FLE-BDA, 
LDA, MMP, and LPP are set as 4, 1, 2, and 2, respec-
tively. The retrieval results of the compared algorithms 
are shown in Fig. 2. The average precision-scope curves 
are generated from the precision values at top 10, 20, 30, 
40, and 50 retrieving images in the first feedback iteration. 

trieving results using the original features without any 
feedbacks. From this figure, the proposed FLE-BDA 
method outperforms the other algorithms LDA, MMP, 
and LPP. In addition, the retrieval results are sufficiently 
improved by relevance feedback scheme. 

Furthermore, the retrieval results after various feed-
back iterations are also given in Fig. 3. The top 10 and 20 
retrieving images after three feedback iterations are 
shown in Figs. 3(a) and 3(b), respectively. The retrieval 
results of the proposed method are better than the other 
algorithms LDA, MMP, and LPP. 

5. Conclusions 

In this paper, a novel subspace learning algorithm 
FLE-BDA is proposed for image retrieval. The proposed 
method achieves the significantly higher precision values 
than the other algorithms. From the experimental results, 
all algorithms FLE-BDA, MMP, LDA, and LPP signifi-
cantly outperform the baseline algorithm. The RF 
scheme could enhance the retrieval results. 
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Figure 2. The precision-scope curves of various compared 

algorithms after the first feedback iteration. 
 

 
(a) 

 
(b) 

Figure 3. The precision values at the (a) top 10, (b) top 20 

retrieval results of four algorithms. 
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