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Abstract

This paper focuses on the detection of small ob-
jects ( e.g. vehicules in aerial images) on complex back-
grounds ( e.g. natural backgrounds). A key contribu-
tion of the paper is to show that, in such situations,
learning a target model and a background model sep-
arately is better than training a unique discriminative
model. This contrasts with standard object detection
approaches for which objects vs. background classifiers
use the same types of visual features/models for both.
The second contribution lies in the use of manifold
learning approaches to build these models. The pro-
posed detection algorithm is validated on the publicly
available OIRDS dataset, on which we obtain state-of-
the-art results.

1 Introduction

Contrasting with most of the recent papers on object
detection – which address the detection of daily life ob-
jects in high quality images [5, 6] – this paper focuses
on the detection of small rigid targets (such as vehi-
cles), in any arbitrary position, on complex textured
backgrounds (see Fig. 1) . The task is made even more
difficult by the fact that some objects can be camou-
flaged, and because it is often difficult to have large
training sets as getting images of the desired targets in
real condition is usually costly. Finally, object’s con-
text in image (i.e. the pixels surrounding the object)
is not strongly correlated with the object itself.
State-of-the-art methods for object detection rely –

in general – on the use of a discriminative classifier
trained to learn class boundaries in the representation
space. One typical example is the well known Dalal
and Triggs’s person detector [3], which represents im-
ages with HOG features and classifies person vs. back-
ground bounding boxes with SVM classifiers [2].
However, this type of approaches does not seem to

be relevant to the detection of small targets on complex
backgrounds. First, if the background is rich and the
number of (positive) training images is limited, learn-
ing reliable discriminative features without over-fitting
can not be done without strong regularization, which
contrast with the need of having an accurate model
of the targets. Second, targets and backgrounds have
so different visual properties that it is hard to believe
that the same models/features can be adapted to both.
Based on these observations, we propose a detection
algorithm using two distinct models, one for the back-
ground and another for the target, combined to score
the candidate windows.
Manifolds are good candidates to model accurately

small targets. If a target size is e.g. 40 × 40 pix-

Figure 1. Typical images from the OIRDS
dataset. Small size vehicles have any orienta-
tions. Shadows, highlights and complex textured
background make the task very challenging.

els its visual appearance lies into a 1, 600-d space de-
spite the fact that only a small number of parameters
(among them: the pose, the illumination, etc.) are
sufficient to explain its appearance. Manifolds are pre-
cisely adapted to represent high dimensional subspaces
that can be generated from a space of fewer dimen-
sions. Supporting this assumption, the work of Zhang
[22] shows that images of 3D objects seen from dif-
ferent view points can be represented as points on a
low-dimensional manifold. On the other hand, back-
grounds do not require (and can not) be modeled as
accurately as targets. Regarding their modeling, we
follow the work of [1] and use a PCA based mani-
fold model. Finally, target and background models are
combined within a probabilistic framework.

The rest of the paper is as follows: we first introduce
some related works, present our approach, and, finally,
give an experimental validation on vehicle detection
from aerial images, showing our approach constantly
outperforms state-of-the-art object detectors.

2 Related works

Object detection is a very active area of computer
vision [5]. Most of the recent approaches use the slid-
ing windows framework, proposing powerful descrip-
tors [3], new kernels [21], efficient pruning strate-
gies [13] or new object models [6]. However, none of
these recent works are really adapted to the detection
of small objets.

Regarding the detection of small objects, state of the
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art approaches are usually based on saliency detection,
the objects to be detected being defined as the regions
of the image which do not have the same statistics as
the background [19]. Among the rare papers which
tried to explicitly model the targets, we can mention
the work of [15], which – in addition of introducing
a new dataset of 36 × 18 pixels pedestrian images –
have shown that good performance can be obtained by
combining standard features such as Haar wavelets or
HOG features with SVM/boosting classifiers [4]. [11]
presents interesting vehicle detection results by using
large and rich set of application-specific image descrip-
tors. Unfortunately their experiments are not repro-
ducible (protocols not given in the paper).
Manifold learning has already been used by several

authors to address detection tasks. In [17], Pentland et
al. introduced the well known eigenfaces, using Princi-
pal Component Analysis to build linear face manifolds
used for face detection. It has also been applied later
to hand detection in [14]. In the same spirit, [1] uses
PCA for object detection, by modeling background and
objects as linear manifolds. Interesting results are re-
ported on good quality car and pedestrian images, for
high dimensional manifolds. In [7], the authors used
autoencoders to build face manifolds for face detec-
tion. However, this approach is limited by the lack of
background model.
Our approach builds on these recent works by us-

ing the best current image features within a manifold
learning framework. The contribution of the paper lies
in the combination of two types of manifolds, namely
autoencoders for the targets and linear manifolds for
the backgrounds. As far as we know, this is the first
time such a model is proposed.

3 Our approach

Our approach builds on the standard sliding win-
dow framework (e.g. [3]), which consists in classifying
densely extracted image sub-windows as foreground
or background regions, and applying a non-maximum
suppression post processing stage. The contribution of
the paper lies in the model used in the scoring function.
As said before, we use two (probabilistic) distinct

models, one for backgrounds the other for objects, the
score of a candidate window being computed as their
log-likelihood:

S(X) = log

(
pobj(Xl = obj|Xs)

pback(Xl = back|Xs)

)
(1)

where Xl is the (unknown) class of the window (Xl ∈
{obj, back}),Xs is the signature of the window (i.e. any
visual descriptor such as a HOG descriptor). Probabil-
ities pobj and pback are given by the object and back-
ground models respectively. Please note that, as we
have two distinct models, pobj �= 1− pback (which con-
trasts with standard approaches using a single model).
Both classes (i.e. objects and background) are mod-

eled by manifolds learned during a training stage. If
Xs,t ∈ H denotes the training signatures1 represen-
tative of a class (H is the signature space), building
a Riemanian manifold M representative of these sig-
natures is equivalent to finding a function f , such as

1we use terms signatures and visual features indistinctively.

(following the Nash embedding theorem):

∀Xs,t ∈M, ∃!Y ∈ Rn, Y = f(Xs,t) (2)

f is called the embedding of M, and is an isometric
function. Obviously, if Xs lies on the manifold, f−1 ◦
f(Xs) = Xs. f−1 ◦ f projects any point of the input
space onto the manifoldM . By denoting PM = f−1◦f ,
we can define the distance to the manifold by:

DM(Xs) = |Xs − PM(Xs)| (3)

where |y| represent the Euclidian norm of y. Finally,
we use this distance to derive the probability for a sig-
nature Xs to be generated by the manifold M:

p(Xs ∈M|Xs) = α exp

(
−DM(Xs)

2

σ2
M

)
(4)

where α is a normalization factor and σ2
M a parameter

of the model. In practice, as scores are given by a like-
lihood ratio (eq. (1)) and as we are only interested in
ranking candidate windows, the normalization factor
can be ignored. The only reamining parameter is the
object/background ratio of σ2

M, estimated by cross-
validation.

Object manifolds. Object manifolds are given by
autoencoders [12]. Indeed, in addition of being re-
ported as being efficient for several computer vision
tasks, they make the computation of f and f−1 pos-
sible, which is not the case of most of the manifold
models (such as ISOMAP [20], or LLE [18]). Fur-
thermore, they allow to build very expressive mod-
els whose complexity can be adapted by varying their
number of layers (3 in our case) and hidden neu-
rons (fixed by cross-validation in our experiments).
We train our autoencoders by minimizing the recon-
struction error of training examples; i.e. Error =∑

Xs,t∈train (Xs,t − g ◦ f(Xs,t))
2, where f is the func-

tion connecting the input to the central layer of the
autoencoder, and g the function connecting the cen-
tral layer to the output. g ◦ f is then equivalent to
the previously seen f−1 ◦ f . In the context of man-
ifold learning, the network is usually used to learn f
and f only, providing an embedding of the data [9].
In contrast, we keep the full network, which gives us
the projection PM(Xs) we are looking for. In practice,
we use sigmoid activation functions and train autoen-
coders, after doing a contrastive divergence initializa-
tion [8], with a standard back-propagation algorithm.
Contrastive divergence is the key to good results, as
it helps the neural network to focus on data that were
given (instead of the identity function). In practice,
to learn the manifold, we take a representative set of
training windows, compute their signatures and opti-
mize autoencoder parameters as explained above.

Background manifold. Our hypothesis is that lin-
ear models such as the PCA is best suited to model
backgrounds. A signature Xs can be written as Xs =∑

βi ∗ PCi where β is the representation of Xs in the
PCA basis (PCI are the principal component). We can
then project Xs into a N-dimensional subspace using
the N first principal components.

Xs =
∑

i=1:N

βiPCi+
∑

j=N+1:M

βjPCj = P (Xs)+ P̄ (Xs)

(5)
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P (X) is the projection of X on the manifold while
P̄ (X) is the projection on the space orthogonal to man-
ifold. Interestingly, |P̄ (X)| is the distance to the man-
ifold, which is proportional to the mean square recon-
struction error. In our experiments, we randomly sam-
ple background windows from training images, com-
pute their signatures and find the best basis by doing
a SVD decomposition of their covariance matrix.
Image features and non-maximal suppression.

Our algorithm can use any type of image features. In
our experiments we have used 3 different ones: (a) raw
pixel intensities (b) gradient maps (c) HOG features.
Regarding non-maximal suppression, we use a simple
and efficient iterative strategy consisting in keeping
only the windows which have the maximum score over
a disk (which radius is half the window width).

4 Experimental results

Dataset and protocol. We validated our approach
on the OIRDS dataset [16], which is one of the rare
publicly available dataset for Automatic Vehicle De-
tection with aerial images.
OIRDS contains a compilation of around 1,000 aerial

images from different sources (e.g. USGS and VIVID),
with about 1800 targets. Shadows, specularities, oc-
clusions, as well as the large intra-class variability
(e.g. regular cars, pickups, mini-vans, etc.) make this
dataset very challenging. The dataset is provided with
rich annotations: distance from the camera to the
ground, target size (in pixels), bounding boxes, per-
centage of occlusion, type, etc. are given for each ve-
hicle. Fig. 1 shows typical images from this dataset.
The dataset is split in 10 folds and we evaluate the per-
formance using a 10 fold cross validation procedure, by
reporting the mean average precision (we use the ex-
perimental protocol of [5]).
As we are primarily interested in knowing the per-

formance of our detector for small targets detection,
images were downscaled to produce a dataset in which
targets are not bigger than 40× 40 pixels.
Finally, as (unfortunately) no reproducible results

have been published so far on this dataset (nor on any
publicly available dataset for small target detection)
we compare the performance of our algorithm with [3],
known to get state of the art results on such tasks
(comparisons with the part-based model of [6] would
not make sense because of target sizes). In addition,
we have also implemented a generative model based
on a Gaussian mixture model, which is reference for
generative models.
Implementation details. Training data are ob-

tained by cropping positive examples, which gives a to-
tal of about 3800 positive examples per fold, and 13000
negative windows randomly sampled from the back-
ground (no overlap with objects). As the step size of
our sliding window is of 8 pixels, when we crop positive
images for training we add a random shift up to 4 pixels
to make the model more tolerant to small shifts. Some
typical positive training examples are given Fig. 2(a).
In addition, the training set is extended by adding pos-
itive examples obtained by flipping up/down/left and
right and by rotating the initial training set.
Regarding image signatures, we experimented with

three different signatures: (1) normalized raw level
intensities, often used for target detection (2) image

(a) Typical training images with
shadows and specular spots.

(b) Vehicle manifolds learnt
by our autoencoder.

Figure 2. Sample training images and autoen-
coder’s manifold.

Figure 3. Four candidate windows and their re-
construction by the PCA background manifold
(2nd row), and by the target manifold learnt by
an autoencoder (last row).

gradients, supposed to be more robust to illumination
changes and (3) HOG features, considered to be the
best choice for this task. In practice, raw pixel inten-
sities are computed as the mean of the different color
channels (OIRDS images are in color). Gradient im-
ages are computed by a Sobel filter. Finally, HOG31 is
an histogram of oriented gradient, with 8 pixels overlap
cells of 16×16 pixels. They contain a 9 bins histogram
of unsigned orientations concatenated with a 18 bins
histogram of signed orientations.

The linear SVM classifier is taken from the svmlight
library [10]. The Gaussian mixture models were learnt
with the Expectation Maximization algorithm and in-
clude 3 gaussians components. The manifold dimen-
sionality of backgrounds models is of 40, 10 and 16 for
intensity, gradient and HOG signatures respectively.
Autoencoders have 3 layers and have respectively 35,
8 and 10 inner nodes for intensity, gradient and HOG
signatures. All these values were determined by pre-
liminary experiments and were kept fixed for all the
presented experiments.

Visualizing autoencoder and PCA recon-
structions. Fig. 2(b) shows some vehicle appear-
ances our autoencoder can generate once trained. The
model has learnt rotated appearance of cars. Fig. 3
shows 4 candidate windows (1st row), their projection
on the background manifold (obtained by PCA, 2nd
row), as well as their projection on the car manifold
given by an autoencoder (last row). As it can be no-
ticed, target images are better reconstructed by the
target model than by the background one, and vice-
versa.

Quantitative results. We have experimented with
5 different detectors. The first one (so called AE-PCA)
is ours, using an autoencoder to model targets and a
PCA based manifold for backgrounds. The second is
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Intensity Gradient HOG31

GMM-GMM 8.3% 21,3% 17.7%
HOG-SVM [3] 10.5% 35.2% 46.8%
PCA-PCA 35.0% 37.9% 42.5%
AE-AE 35.3% 33.5% 47.5%

AE-PCA (ours) 35.5% 39.9% 48.9%

Table 1. Mean Average Precision on OIRDS.

Intensity Gradient HOG31

HOG-SVM [3] 1.5% 12.1% 12.6%
AE-PCA (ours) 3.3% 16.4% 17.1%

Table 2. Mean Av. Precision on large images.

one of the state of the art approaches for detection,
namely the Dalal and Triggs’s detector [3] (so called
HOG-SVM). In addition, we have also experimented
with three other detectors, one using PCA for target
and background (PCA-PCA), another one using gaus-
sian mixture model, here again for both target and
background (GM-GM), and a last one using an autoen-
coder for both as well (AE-AE). For these 5 detectors,
we report the mean average precision over the 10 folds
of the OIRDS datasets in Table 1.
The main conclusion we can draw from these results

is that the proposed approach (the AE-PCA detec-
tor) outperforms any other detector, for any type of
feature. The best results are obtained with HOG31
signatures. We also observe that Gaussian mixture
models do not perform well in any case. Indeed, we
have noticed that the GM model tends to be special-
ized to a few images, showing that EM gets stuck in
local minima. From these results, we can also con-
clude that the HOG-SVM detector is outperformed
– when using gradient and gray level signatures – by
the PCA-PCA detector. HOG-SVM is however better
than PCA-PCA with HOG31 features. In addition,
we can also observe that using two autoencoders (ob-
jects+backgrounds) does not give better results, as the
background autoencoder fails to capture the diversity
of backgrounds.
We kept aside a dozen images that were more dif-

ficult because of their large size for additional experi-
ments (using the previously learnt classifiers). Results
are given Table 2. The performance is not as good
as on the regular OIRDS images, as images are much
larger while not containing more targets. Nevertheless,
our AE-PCA detector clearly outperforms the HOG-
SVM detector.

5 Conclusions

This paper proposes a detection algorithm based
manifold learning in which targets and background are
model by distinct and adapted models. The object
is accurately modeled by the mean of an autoencoder
learned off-line. In addition, background is modeled by
a PCA based linear manifold. We have experimentally
validated our approach on a publicly available vehicle
dataset, and show results that outperform state-of-the-
art algorithms.
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