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1 Introduction

Knowing about the type of objects that exist in real
world is important thing for automation of conveyance
or classification task. This paper reports our challenges
the purpose of which is to categorize objects that are
incorporated into home electric appliances. Our target
includes small sized objects, flexible objects, and ob-
jects that have various appearances by the difference in
view-points. Sensing methods we used are two types of
measurement data; (1) Mesh model measured by a 3D
digitizer, and (2) multi-viewpoint images captured by
a high-resolution camera. Using these sensor data, we
studied about feature descriptions. These descriptions
are designed by regarding the characteristics of target
objects and the property of each measurement data.

Figure 1 shows our target objects that are composed
of 31 series of electric appliance components. They
include small sized objects (e.g. screw and clasp),
relatively large objects (e.g. electrical circuit sized
hundreds millimeters), shiny and transparent objects
(e.g. glass), and flexible objects (e.g. cable and wire).
Meanwhile, some of components have a big difference
on their appearances or shapes even though they are
grouped as a same category. The goal of this research
is to design high-precision classifier for these 31 cate-
gorized objects.

2 Measurement Data

Figure 2 shows two measurement systems that we
utilize. They are composed of a sensor (a digital single-
lens reflex camera or a 3D digitizer), a turntable, and a
computer. During a measurement, an object placed on
the turntable is rotated at regular angle intervals. Be-
cause all of the measurement procedures are controlled
by the computer directly connected to the sensor and
the turntable, only we have to do is to just place an
object on the turntable.

Figure 3 shows several components we target. The
figures numbered (1) show one object which has differ-
ent shape and appearance changes between two sides.
The figures numbered (2) show various appearances
caused by their pose, and the figures (3) show some
components that can have various shapes despite of
the same category. Their colors that are similar to
background is also one cause of difficulties. The fig-
ures (4) shows two components in the same category.
90 % components in the category is the same color with

Figure 1. 31 series of parts

Figure 2. Measurement system

the left figure, but remaining 10 % components is the
same color with right figure.

In general, 3D digitizer is a sensor that projects laser
light or regularized patterns, and a measurement will
be failed in the part where the projection is insufficient.
For instance, the quality of the measurement will be-
come worse or will be lost when object surfaces direct
to depth. Other problems are the time of measure-
ment and data merging for getting one complete mesh
model. Meanwhile, because the data is represented by
3D shape, getting rid of background data is easier than
the case of images.

On the other hand, camera is a completely passive
sensor. Even if objects with transparent or shiny sur-
face are targeted, an image captures their influence and
property. Sensor information processing with feasible
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Figure 3. Examples of electric parts

compensation can provide us to get the information of
object surfaces even if the cases. Meanwhile, one of
the problems is to know the existence of a target ob-
ject when the object looks like background because of
the surface color.

3 Composition of Classifiers

3.1 Basic policy for feature description

One of the keypoints to solve categorization prob-
lem with high accuracy is ’feature description’. Fea-
ture description that represents large distance for dif-
ferent categories and small distance for the same cat-
egory enables to implement high accuracy categoriza-
tion, even if simple linear discriminant function is pro-
vided. For this reason, we focus on the design of fea-
ture description. In our investigation, using both in-
formation about whole shape and local shape is impor-
tant. Following subsections explain about our feature
description calculated from 3D shape model and multi-
view images.

3.2 An approach for 3D shape-based categoriza-
tion

As related work, 3D shape retrieval have been stud-
ied for classifying an input object into known object
categories. Most of these researches, an input model
composed of a group of 3d meshes is converted to fea-
ture description, and it is evaluated the similarity with
pre-defined categories.

Several feature descriptions have been proposed; Ex-
tended Gaussian Image (EGI) [1], Concrete Radialized
Spherical Projection (CRSP) [2], Spherical Wavelet
Descriptor (SWD) [3], and so on. Density Based
Framework (DBF) [4] is a framework based on EGI
representation. Methods described above need a pre-
processing that aligns the direction of shape models.
For this purpose, statistical methods, such as CPCA
[5] and NPCA [2], are applied.

On the other hand, feature descriptions without pose
alignment is needed in our targets. This is because
the alignment process do nothing for flexible objects
(e.g. cables). For this reason we focus on SPRH (Sur-
flet Pair Relation Histogram) feature [7]. SPRH fea-
ture is based on one frequency histogram that captures

rough shape information, which is as same as other de-
scriptors described above. In addition, if an object in-
cludes many of locally-resembled shape, SPRH feature
enables to represent the situation. We implement a
discriminant function that includes feature description
considering both rough shape information and local
shape patterns. Several techniques such as multi-scale
description and bag of features are included in this
function.

3.3 Feature description by multi-scale SPRH

In our assumption, a shape model is composed of
a group of surfaces. Wahl et al. [7] calls a pair of a
surface and its normal ’surflet’, and proposed SPRH
feature by describing the relation between many pairs
of surflets sampled from a model.

For a given surflet pair (p1,n1), (p2,n2), first a co-
ordinate system is defined. If the origin is chosen to
be p1, the following base vectors u, v, w are defined:

u = n1,v =
(p2 − p1)× u

‖(p2 − p1)× u‖ ,w = u× v. (1)

Using these base vectors, the relation between two
surflets are described by four parameters:

α = arctan(w ◦ n2,u ◦ n2), (2)

β = v ◦ n2, (3)

γ = u ◦ p2 − p1

‖p2 − p1‖ , (4)

δ = ‖p2 − p1‖. (5)

SPRH features are given by quantizing these parame-
ters and binning into a histogram. Since the histogram
is computed over surflet pairs on the whole object, it
includes information on global geometry as well as lo-
cal geometry.

Histogram generated through sampling and binning
process is susceptible to the effects of small difference
of surfaces, measurement error, and defect of surface
data. To absorb them, kernel density estimation is
applied with binning the relation of surflets.

Another improvement for reducing the effect of ran-
dom sampling, poisson sampling is applied to surflet
extraction. Important parameters are R and r (R < r)
; the former indicates a radius of spherical range for
evaluating local shape, and the latter is a distance
between two samples. In our implementation, the r
is gradually decreased until the number of samples
reaches a predefined number.

3.4 An approach for image-based categorization

As same attitude as using 3D shape data, both rough
overall shape and local shape are considered. First, an
input image is divided into aligned rectangular regions.
With each region, three features, that is shape feature,
appearance feature, and color feature, are calculated.
The feature vectors with normalized by means of L1
norm are combined, and are used for discrimination
by SVM (Support Vector Machine).

The point of the method we applied is a pre-
processing for extracting shape information. The pro-
cessing composes of three steps; (i) edge extraction, (ii)
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Figure 4. Image processing for feature description

noise removal, and (iii) calculation of Distance Trans-
form [8]. It has an effect in description of roughness of
object shape and texture on the object.

The discrimination process is differ from 3D shape-
based categorization. Images that capture an object
are used for similarity calculation individually, whereas
shape-based approach uses a shape model that com-
bines several measurement data.

3.5 Feature description from multi-view images

Figure 4 shows the processing flow of the pre-
processing (i) to (iii) described above. After that, fea-
ture description is performed based on SIFT feature
that is calculated about ordinary-divided lattice points
in an image.

The first step of the pre-processing is a process that
calculates edge flow. Eigenvalues are calculated from
structural tensor in the same manner as Harris corner
detector. The tensor with gaussian weight function is
represented as follows:

Mσ(x, y) = Gσ(x, y) ∗ (∇I)(∇I)T , (6)

where I denotes image, Gσ denotes gaussian function,
and σ denotes variance. Using eigenvalues λ1, λ2(λ1 ≥
λ2) and corresponding eigen vector u1,u2 calculated
from Mσ, we can get edge direction as u1 and edge
magnitude as λ1. Reliability of the edge is calculated
by E = (λ1 − λ2)/(λ1 + λ2).

Contour information of an object is extracted by
edge magnitude with relative ease. However, it is not
the case with objects the color of which is similar to
that of background. On the other hand, edge flow pro-
vides weak edges though it is sensitive to noise. From
these properties, we extract edges on ridge line by se-
lecting regions where both consistency of edge flow and
edge magnitude become high.

The consistency of edge flow is evaluated by aver-
aging of edge direction {ui}N

i=1 in local region. That
is,

val =

∥∥∥∥∥
1
N

∑

i

ui

∥∥∥∥∥ . (7)

The next step is to extract a group of points that
are on edges with high continuity. For that purpose,
segmentation process is performed based on three cri-
teria; the distance between pixels, the consistency of

edge direction, and magnitude. Minimum Spanning
Tree (MST) is applied to the segmentation process.
Distance Transform is calculated from the segmenta-
tion results, and we can get the information of object
contour and shape patterns.

In addition to the edge-based description, appear-
ance and color feature are used. The appearance fea-
ture is based on SIFT descriptor. SIFT is calculated
by grid sampling, and bag of features are applied to
generate frequency histogram. Meanwhile, Opponent
Color [9] is used to represent color information. To
overcome illumination changes and shooting angle dif-
ference, kernel density estimation(KDE) is applied. A
feature vector is a frequency histogram that is of color
space divided into ordinary cubes.

3.6 Integration of multi-view information

In the case of image-based categorization, a final dis-
crimination result is obtained by integrating discrimi-
nation results at each view.

Platt [10] proposed a method for deciding parame-
ters that maximize the likelihood of a posterior prob-
ability with sigmoid function. In our case, we use the
result of SVM on behalf of the posterior probability
about each view. That is,

p(C|V ) =
p(C)
p(V )

p(V |C) =
p(C)
p(V )

p(v1, . . . , vn|C), (8)

where V = {v1, . . . , vn} is a set of views. Assuming
that each of views is independently generated from one
model, right side of the equation (8) can be written as
follows:

p(C)
p(V )

∏

i

p(vi|C) =
∏

i p(vi)
p(C)n−1p(V )

∏

i

p(C|vi), (9)

where p(C) is a prior probability. Assuming that the
p(C) is constant, maximizing p(C|V ) is equal to max-
imizing the following equation:

∑

i

ln{p(C|vi)}, (10)

where p(C|vi) is a probability calculated at ith view.
However, independency assumed above is not typically
true. As other concern, an input view is far from any
view included in training data. From these reasons,
we use following equation that replace ln to identity
function.

∑

i

p(C|vi) (11)

4 Experiments

First, we prepared a training dataset. About 10 ob-
jects in each categories were selected, their 3D shapes
and multi-view images were captured. Feature vectors
were calculated from them in advance.

N-fold cross validation is applied to evaluate catego-
rization accuracy. Figure 5 – 7 shows categorization
results. The horizontal axis indicates the number of
categories (No.1, 11 and 32 were unused number). 1.0
in the vertical axis means that the categorization suc-
ceeded with 100 % accuracy.

429



Figure 6. Category classification by means of
image-based feature

Figure 7. Category classification by means of two
proposed methods

Figure 5. Category classification by means of 3D
shape-based feature

Figure. 5 is a result about 3D shape model. Sev-
eral existing feature descriptions such as EGI, LFD[11],
DBF, SPRH，and SIFT-BoK [12] were also examined.
SPRH shows high accuracy against No.17 (seal ma-
terial), No.19 (power strip), No.24 (wiring cable) and
No.27 (hose) that were flexible objects.

Figure 6 shows results of the image-based catego-
rization. One image dataset per one object includes 12
images captured at different views. This graph shows
the results of three features; Color feature (color),
bag of features generated from SIFT descriptors with
grid sampling (raw SIFT), and the proposed method
(DT SIFT). Compared with shape-based categoriza-
tion, they indicated high accuracy result.

Figure 7 is a graph that shows two methods proposed
in this paper. 3D shape-based feature that combines
common SPRH and improved SPRH by using bag of
features representation shows 86% success rate. On the
other hand, image-based categorization was performed
by combining three image features that were individu-
ally indicated at Figure 6. The success rate was espe-
cially went up for small objects; No.2 (screws with var-

ious shapes), No.21 (metal frame), No.22 (metal com-
ponent). Note that most of No.12(cables) and No.19
(power strip) objects whose color was difficult to distin-
guish from background could be classified accurately.
The conclusive success rate was 94%.

5 Conclusions

This paper described the categorization of objects
that were incorporated into home electric appliances.
We used two types of measurement data; 3D shape
model and multi-view images. Feature descriptions
considering both rough overall shapes and local shape
were proposed, and experiments showed high accuracy
rate, especially for using multi-view images.

For future work, we extend our feature description
for the case that only a part of object can be measured
and several objects are measured with one sensing.
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