
Ray-Tracing Based Interactive Camera Simulation

Damon Shing-Min Liu
Computer Science Dept

National Chung Cheng University, Taiwan
damon@computer.org

Che-Wei Hsu
Computer Science Dept

National Chung Cheng University, Taiwan
a09007061@gmail.com

Abstract

Camera simulation aims to enhance realistic rendering,
lens design and augmented reality by accurately simu-
lating geometrical optics. Here our work focuses on
optical phenomena, such as depth of field, monochro-
matic aberration, distortion, and aperture exposure, that
are based on real camera lens architecture. Our approach
is modeling pixel equation using ray tracing algorithm to
render scenes after calculating the effect of lens refraction.
We also provided an interactive user interface to control
camera parameters, allowing for visual display of the
corresponding camera lens system and of synthetic ren-
dering result. To promote the performance of ray tracing
algorithm, we improved our system using GPGPU pro-
gramming language, CUDA, and OptiX ray tracing
engine that is capable of parallel processing massive
multi-ray sampling. We further optimized the sampling
method for real-time pixel pupil calculation.

1. Introduction

As the complexity of virtual environment increases, it
becomes a critical issue to create realistic images that may
involve light simulation techniques such as camera model.
Our research endeavor focuses on multi-lens system si-
mulation. The evolvement of the camera lens module was
developed from the simple pinhole camera to exploit the
ideal lens module for achieving image with focal point.

In a real world camera, there are groups of monolithic
or combined lens in camera lens system. They characte-
rized lens system, such as wide-angle and fisheye, using
different lens combinations. Although multi-lens speci-
fication can be calculated and displayed using
approximate mathematical formula, we made it possible
to visualize the process of designing or tuning lens using
refraction of geometrics. Moreover, our approach can be
used in a rendering process to actuate realistic image such
as depth of field, monochromatic aberration, distortion,
and aperture exposure.

We completed a multi-lens camera simulation using a
ray tracing algorithm. To accelerate performance of the
program, we utilized GPU and employed NVIDIA OptiX
ray tracing engine to compute ray launched in parallel
because ray tracing algorithm can be parallelized naturally.

2. Related Work

Pinhole camera model or thin lens model that is used to
describe ideal and perfect lens in image formatting
process. Most traditional computer graphics images are
based on pinhole camera to synthesize scene image be-

cause pinhole camera is easy to be implemented [1]. Thin
lens model implemented the depth of field and motion
blurs in Potmesil’s [2] and Cook’s [3] research in the
1980s. Zhou et al. [4] introduced a two-pass filter that
blurs the sampling pixel by coloring from neighboring
pixels. Michael et al. [5] proposed using heat diffusion to
simulate blurring of depth of field. They implemented the
depth of field with thin lens camera model using the im-
age-based post-processing method.

In thick lens system, a lens is composed of two surfaces
with related positions of focal point and principal point.
Multi-lens camera lens model consists of complex lens
system that can be replaced by a black box in paraxial
geometrical optics system. To combine that focal distance
of separated lenses, the entire focal point can be calcu-
lated using Newtown’s formula [6]. Kolb et al. [7]
implemented the multi-lens camera model and accurately
simulated the behavior of physical systems containing an
aperture and camera system architecture for a geometri-
cally and radiometrically correct camera model. The
completed full lens system includes optical and lens
fundamentals such as diffraction, material coatings, and
lens flare effects. Steinert et al. [8] and Hullin et al. [9]
implemented optical realism synthetic image using ray
tracing algorithm. The flare and diffraction were demon-
strated in lens effect by shedding lights pass through the
complex lenses.

Our research is based on Kolb’s work and focuses on
the geometry between lenses so that the advanced optical
theory can be applied for simulating the camera system
using ray tracing algorithm. Instead of using
post-processing methods, we exploited ray tracing algo-
rithm in our research for realism and characteristics of
light path, but in it thin lens camera system still fails to
model a number of optical phenomena and lacks for
aperture to obtain the correct exposure.

The OptiX engine is a low level ray tracing engine
functioning on highly parallel architectures of NVIDIA
GPU. Engineers can program ray tracing pipeline using
small set of operations. For easy programming the code of
ray tracing kernel, OptiX, is based on CUDA, a
C-extension programming language, rather than using
SIMD-style constructs. It also provides just-in time
compiler and object model acceleration structures to im-
plement its programs more efficiently [10].

Geometrical optics does not describe wave-particle
duality of light; instead, that light is in terms of rays to
model the propagation in a homogeneous medium. It
usually is used in computer graphics for describing light
propagation, refraction and reflection linearly. Refraction
can be described according to Snell’s refraction law [6],
but geometrical optics fails to account for optical effects
such as diffraction. Even though geometrical optics can-
not describe wave-particle duality physically, the

MVA2013 IAPR International Conference on Machine Vision Applications, May 20-23, 2013, Kyoto, JAPAN14-6

383

approximation method still can model feature of the dif-
fraction. In lens design, the combination of lenses
proposes to decrease aberrations [11]. Some special re-
quests of camera lenses still have aberrations as the
special effect. To consider the effect of light, we tried to
simulate optical phenomena as possible as we can.

3. Approaches

The behavior of geometry camera can be characterized
by launching ray from image plane, and then ray transmits
in air of camera, passing through lenses and aperture, and
finally shooting to the object world. The rendering result
is solved by ray tracing algorithm with super-sampling
and exposure function. In addition, we obtain the ren-
dering result, we obtain the refraction data of camera
simulation from Optix system and display resulting image
using OpenGL.

Figure 1. System overview.

3.1. System overview
We depict our system flow, as shown in Figure 1. The

first step prepares coherent geometry camera data for
camera simulation from tabular camera lens data. The
second step runs in GPU to calculate ray and lens surfaces
intersection as the unit of pixel with camera position and
orientation and outputs ray’s direction and position when
rays pass through full camera lens system.

Figure 2. Lens surface data of Double-Gauss.

3.2. Camera simulation
In lens design book, tabular description of lens surface

and aperture suffices to profile the view of a lens system
[12]. Every lens or aperture can be reverted its geometry
of surface or aperture as shown in Figure 2. We defined
geometric lens surface using tabular lens data for a se-
quential list of spheres that were arranged along with axis
by their center points to curvature lens surface. We
pre-computed the geometric data of each lens surface,
such as lens cap top, and center of sphere of lens surface,
to characterize full camera system and used it for light

path calculation, as shown in Figure 3.

Figure 3. 2D sketch of lens spheres of
Double-Gauss. Red spheres are negative radius of
lens surface. Blue spheres are positive radius of
lens surface.

To construct camera system, we utilized camera coor-
dinate system to define camera position and orientation.
Line equation in vector form is used to describe light path.
We exploited ray-sphere intersection algorithm [13] and
Snell's law to calculate the refraction on each sphere
surface. We defined our image plane using a fictitious
plane outside of the last lens surface and center of film, �⃗.
With given film size that was defined by user, each pixel �(�, �) in image plane can be calculated using camera
coordinate system vector [��⃗ 	⃗
��⃗] as: �(�, �) = �⃗ + Filmsize/2 ∗ (���⃗ + �	⃗) (1)

In each pixel of image, we assume that a pixel receives
different directional light paths from lens surface. To
balance sampling quality, we randomly select light from
lens surface and limit light inside of lens aperture. Every
lens sphere can be defined as a set of points � with the
radius of sphere � as in Equation (2) and Equation (3).
To solve the point of ray-sphere intersection on �, we
substituted line equation in Equation (3) and got the al-
gebraic Equation (4). � = [�� �� ��], c⃗ = [�� �� ��], (2) (�� − ��)2 + (�� − ��)2 + (�� − ��)2 = �2 (3)

We solved Equation (4) as the quadratic equation and
verified that the roots of � should be a real number using
the discriminant of the quadratic equation, and verified
ray-sphere intersection point with solved roots.

� �0 = [�0 �0 �0] , �⃗ = [�� �� ��]�� = �0 + ��� , �� = �0 + ��� , �� = �0 + ���(�0 − ��)2 + (�0 − ��)2 + (�0 − ��)2 = �2 � (4)

where �0����⃗ is start point, �⃗ is the line direction, � is the
scale. As the vector form of line equation, we determined
the refraction calculation according to Equation (5),
where ���⃗ is the unit normal of ray-sphere intersection
point that was obtained from intersection point to sphere
center; �0����⃗ is the direction vector of incident ray; �1����⃗ is
the direction vector of refracted ray; �1, �2 are refractive
indices. We assumed the aperture is a virtual circle in 3D
whose circle center is on
��⃗ and orthogonal to
��⃗ . When
rays intersected with the virtual aperture, we did not cal-
culate the refraction; if rays did not intersect with virtual
aperture, they would be blocked.

� �1����⃗ = �1�2 �0����⃗ + Γ���⃗ ,
Γ = �1 − �1�2 �1 − ��0����⃗ ∙ ���⃗ �2� − �1�2 �0����⃗ ∙ �,����⃗ � (5)

3.3. Scene ray tracing
Our ray tracing algorithm is implemented using OptiX

384

ray tracing engine, including ray launch, traversal, and
shading in OptiX framework. In ray launch, the most
important part is to implement ray generation program.
Ray generation program weights the most in our work.

Ray generation program is parallelly executed in each
thread [14]. Each thread is distinguished with a unique
rtLunchindex that represents pixel of rendering result and
start point for ray tracing.

Before ray tracing scene, we simulated rays launch
from image plane passing through lens system using
camera simulation method. If rays do not pass the lens
system, it means ray was blocked by aperture or lens
barrel, we assign it a background color, usually is black,
for weighing accumulation result. To obtain the position
and direction that we emitted from last lens surface, Op-
tiX offers rtTrace API to trace and shade scene color.

For optimizing quality of resulting image, we exploited
pixel pupil that was improved from exit pupil by Steinert
et al. in [8]. They illustrated that different pixel locations
are not imaged with full exit pupil because the effective
aperture of vignetting. For interactive control, we im-
plemented adjustable sampling method that tests passive
sampling ray in each iteration of pixel ray tracing thread.
We consider the passive sampling rays that pass through
lens system and record their 3D coordinate to compute
average center of position gravity and average distributed
range for calculating the radius of distributed range in
each pixel. Pixel pupil center and radius will be converged
in sampling iterations when lens system is unchanged.

Figure 4. Geometry of the irradiance [7].

In camera simulation, exposure was introduced in Kolb

et al.’s work [7]. Pixel irradiance can be written as in
Equation (6). Exposure function corresponds to pixel
irradiance from a small region on last lens surface D, with
a during of shutter open T, as shown in Figure 4, the ex-
posure can be written as in Equation (7).

H(�′)=E(�′)T (6)

E(�′) = ∫ "(�′′ , �′) �#� $ ′ �#� $ ′′‖�′′ −�′ ‖2�′′ ∈' �*′′ (7)
We compute each solid angle over pixel normal and

lens surface normal on �′ and �′′ . To solve the integral
of exposure function, we use ray tracing algorithm that
shads color from object world. The �′′ is easy to be
found using ray sphere intersection with given �′ and a
random direction. $′ and $′′ on �′ and �′′ can also be
calculated after refraction calculation to obtain normal
vector of lens surface on �′′ . Finally, the term �#� $ ′ �#� $ ′′‖� ′′ −� ′ ‖2 �*′′ is used to weigh the shaded result of
sampling ray and ' is averaged by number of sampling
rays to �*′′ . Finally, we ask users to define the exposure
time as a gain value to compute Equation (6).

OptiX maintains a traverser in mesh bounding box
traversal step. In shade state of OptiX, closest hit program,

any hit program, and miss hit program shads object sur-
face irradiance, shadow, and background. Closest hit
program is executed whenever Optix finds the closest
intersection between a ray and an object [15]. In closest
hit program, we employ Phong shading algorithm with
material template library illumination modes and cast
shadow ray and second order ray to measure shading color.

(a) (b) (c)
Figure 5. Aberrations simulation. (a) Spherical
aberration (b) Coma (c) Astigmatism.

4. Experiments
Our experiment exploited OptiX ray tracing engine

using the NVIDIA CUDA GPU computing architecture.
To combine with display of simulation result, we use
OpenGL 3.1 and GLUT 3.7.6. For GUI design in OpenGL
that was no complicated windows GUI environment, we
utilize GLUI 2.35 to pass parameters from interface to our
system. In GPU, we use NVIDIA Quadro 600 which has
96 cores for highly parallel computing performance. Our
development environment uses Microsoft Visual Studio
2008 with NVIDIA CUDA 3.2 and NVIDIA OptiX Ray
tracing engine 2.5.1 in OS Windows 7 32bit.

Figure 6. Image distortion and Fish-Eye camera.

First, we depicted light path in a single convex lens to

illustrate simple aberrations as shown in Figure 5. We
drew light path that was launched from a point with dif-
ferent directions. When lights pass through lens surface
on places of different height, lights cause aberrations. As
we sketch the light path, the rendering result of image
distortion can be simulated in our rendering result window.
We use a fish-eye camera model in [11] to emphasize
distortion of scene as shown in Figure 6. The fish-eye
camera shows barrel distortion, and the dark sides in
corner are spaces that lens apertures occlude lights.

 (a) Our result (b) OptiX example

Figure 7. Comparison of depth of field.

385

The other import phenomenon of light, depth of field,
is simulated in our system using Double-Gauss lenses
model that is shown in Figure 7. In close up scene, depth
of field can be approximated using Equation (8). DOF ≈ 2�� .+1. 2 (8)

where � is the diameter of circle of confusion; � is
f-number; m is the magnification of lens. In Double-Gauss
camera model, we assume coordinate of scene scales a
unit to one pixel size that � can be assigned as 1mm. The
depth of field can be calculated as 7.86 mm that was close
to the value we observed in rendering result. OptiX pro-
vides a depth of field camera model that uses thin lens
model, but it gets narrow depth of field and blur promptly.

Figure 8. Rendering result.

System performance depends on number of pixels that
needs to execute mesh traversal in ray tracing algorithm.
In a thread, its work load per pixel, 94.9% of GPU ex-
ecution time was spent in OptiX ray-tracing; 4.2% spent
in camera lens refraction simulation using GPU. When
complexity of scene increases, the ray tracing algorithm
launches rays for multi-order reflection on object surface
or refraction in translucent object that can bring per frame
performance down. For one sampling ray in each pixel,
our system performance is 1.537 frames per second that
uses Double-Gauss camera, as shown in Figure 8, and
sampling 20 times in 640 x 640 resolution.

Figure 9. System overviews with GUI.

As shown in Figure 9, our GUI interface lists camera
parameters as in a real camera system to shot scene. We
support kinds of camera lenses surface data for user to
acquaint with inside of camera. Moreover, our system can
modify lens surface data to create unique camera model.

5. Conclusion and Future Work

We simulated geometric multi-lens based on ray trac-
ing algorithm. This system demonstrates refraction using
Snell’s law. In it, light path can be accurately calculated
for aberrations and depth of field. Ray tracing algorithm
accompanied with parallel computing can enhance effi-
ciency and performance in sampling method to curtail

overhead of experiment. Camera simulation improves the
realization of light characteristic and visualizes light
transition path for observing and proposes new surmise.

We need to acquire more light theory, such as
wave-particle duality of light, to investigate diffraction
that may cause in camera system. To accurately represent
a pixel color in film, we need to launch large amount of
sampling ray when relative focal point of each lens sur-
face is not on target. For depth of field effect, we need
more sampling rays in blurred field, but fewer sampling
ray can represent full light field because all lights are
focused on a point.

In camera simulation, ray transmissions can be de-
scribed in matrix form. Full camera lenses are treated as
matrixes that can be pre-computed into single transmis-
sion matrix to decrease computing time. OptiX presents a
general-purpose ray tracing algorithm framework. To
optimize ray tracing algorithm and reduce stumbles, pure
CUDA programming may speed up.

References
[1] P. Lönroth, et al.: “Advanced real-time post-processing

using GPGPU techniques,” DICE, 2009.
[2] M. Potmesil, et al.: “A lens and aperture camera model for

synthetic image generation,” ACM SIGGRAPH, vol. 15, no.
3, pp. 297-305, August 1981.

[3] R. L. Cook, et al.: “Distributed ray tracing,” ACM SIG-
GRAPH, vol. 18, no. 3, pp. 137–145, July 1984.

[4] T. Zhou, et al.: “Accurate depth of field simulation in real
time,” Computer Graph Forum, vol. 26, no.1, pp. 15-23,
March 2007.

[5] M. Kass, et al.: “Interactive depth of field using simulated
diffusion on a GPU,” Tech. Rep., Pixar Animation Studios,
no. 06-01, 2006.

[6] M. Katz: ”Introduction to geometrical optics,” World Scien-
tific, pp. 36-103, 2002.

[7] C Kolb, et al.: “A realistic camera model for computer
graphics” ACM SIGGRAPH, pp. 317–324, 1995.

[8] B. Steinert, et al.: “General spectral camera lens simulation,”
Computer Graphics Forum, vol. 30, no. 6, pp. 1643-1654,
March 2011.

[9] M. Hullin, et al.: “Physically-based real-time lens flare
rendering,” ACM Transactions on Graphics, vol. 30, no. 4,
pp.108:1–108:9, July 2011.

[10] B. Barsky, et al.: “Camera models and optical systems
used in computer graphics: Parts i and ii,” ICCSA, pp.
246–265, 2003.

[11] W. Smith: Modern Optical Engineering, McGraw-Hill,
3rd edition, pp. 61-89, 2000.

[12] W. Smith: Modern Lens Design, McGraw-Hill, 2nd edi-
tion, pp. 85-88, 2005.

[13] Ray-Sphere Intersection,
http://www.siggraph.org/education/materials/HyperGraph/r
aytrace/rtinter1.htm

[14] ”OptiX Ray Tracing Engine Programming Guide version
2.1,” NVIDIA CORPORATION, pp. 30-47, September 2009.

[15] ”OptiX Ray Tracing Engine Quickstart Guide version 2.1,”
NVIDIA CORPORATION, pp.18-24, September 2010.

386

