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Abstract 

Camera simulation aims to enhance realistic rendering, 
lens design and augmented reality by accurately simu-
lating geometrical optics. Here our work focuses on 
optical phenomena, such as depth of field, monochro-
matic aberration, distortion, and aperture exposure, that 
are based on real camera lens architecture. Our approach 
is modeling pixel equation using ray tracing algorithm to 
render scenes after calculating the effect of lens refraction. 
We also provided an interactive user interface to control 
camera parameters, allowing for visual display of the 
corresponding camera lens system and of synthetic ren-
dering result. To promote the performance of ray tracing 
algorithm, we improved our system using GPGPU pro-
gramming language, CUDA, and OptiX ray tracing 
engine that is capable of parallel processing massive 
multi-ray sampling. We further optimized the sampling 
method for real-time pixel pupil calculation. 

1. Introduction 

As the complexity of virtual environment increases, it 
becomes a critical issue to create realistic images that may 
involve light simulation techniques such as camera model. 
Our research endeavor focuses on multi-lens system si-
mulation. The evolvement of the camera lens module was 
developed from the simple pinhole camera to exploit the 
ideal lens module for achieving image with focal point. 

In a real world camera, there are groups of monolithic 
or combined lens in camera lens system. They characte-
rized lens system, such as wide-angle and fisheye, using 
different lens combinations. Although multi-lens speci-
fication can be calculated and displayed using 
approximate mathematical formula, we made it possible 
to visualize the process of designing or tuning lens using 
refraction of geometrics. Moreover, our approach can be 
used in a rendering process to actuate realistic image such 
as depth of field, monochromatic aberration, distortion, 
and aperture exposure. 

We completed a multi-lens camera simulation using a 
ray tracing algorithm. To accelerate performance of the 
program, we utilized GPU and employed NVIDIA OptiX 
ray tracing engine to compute ray launched in parallel 
because ray tracing algorithm can be parallelized naturally. 

2. Related Work 

Pinhole camera model or thin lens model that is used to 
describe ideal and perfect lens in image formatting 
process. Most traditional computer graphics images are 
based on pinhole camera to synthesize scene image be-

cause pinhole camera is easy to be implemented [1]. Thin 
lens model implemented the depth of field and motion 
blurs in Potmesil’s [2] and Cook’s [3] research in the 
1980s. Zhou et al. [4] introduced a two-pass filter that 
blurs the sampling pixel by coloring from neighboring 
pixels. Michael et al. [5] proposed using heat diffusion to 
simulate blurring of depth of field. They implemented the 
depth of field with thin lens camera model using the im-
age-based post-processing method. 

In thick lens system, a lens is composed of two surfaces 
with related positions of focal point and principal point. 
Multi-lens camera lens model consists of complex lens 
system that can be replaced by a black box in paraxial 
geometrical optics system. To combine that focal distance 
of separated lenses, the entire focal point can be calcu-
lated using Newtown’s formula [6]. Kolb et al. [7] 
implemented the multi-lens camera model and accurately 
simulated the behavior of physical systems containing an 
aperture and camera system architecture for a geometri-
cally and radiometrically correct camera model. The 
completed full lens system includes optical and lens 
fundamentals such as diffraction, material coatings, and 
lens flare effects. Steinert et al. [8] and Hullin et al. [9] 
implemented optical realism synthetic image using ray 
tracing algorithm. The flare and diffraction were demon-
strated in lens effect by shedding lights pass through the 
complex lenses. 

Our research is based on Kolb’s work and focuses on 
the geometry between lenses so that the advanced optical 
theory can be applied for simulating the camera system 
using ray tracing algorithm. Instead of using 
post-processing methods, we exploited ray tracing algo-
rithm in our research for realism and characteristics of 
light path, but in it thin lens camera system still fails to 
model a number of optical phenomena and lacks for 
aperture to obtain the correct exposure. 

The OptiX engine is a low level ray tracing engine 
functioning on highly parallel architectures of NVIDIA 
GPU. Engineers can program ray tracing pipeline using 
small set of operations. For easy programming the code of 
ray tracing kernel, OptiX, is based on CUDA, a 
C-extension programming language, rather than using 
SIMD-style constructs. It also provides just-in time 
compiler and object model acceleration structures to im-
plement its programs more efficiently [10]. 

Geometrical optics does not describe wave-particle 
duality of light; instead, that light is in terms of rays to 
model the propagation in a homogeneous medium. It 
usually is used in computer graphics for describing light 
propagation, refraction and reflection linearly. Refraction 
can be described according to Snell’s refraction law [6], 
but geometrical optics fails to account for optical effects 
such as diffraction. Even though geometrical optics can-
not describe wave-particle duality physically, the 
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approximation method still can model feature of the dif-
fraction. In lens design, the combination of lenses 
proposes to decrease aberrations [11]. Some special re-
quests of camera lenses still have aberrations as the 
special effect. To consider the effect of light, we tried to 
simulate optical phenomena as possible as we can. 

3. Approaches 

The behavior of geometry camera can be characterized 
by launching ray from image plane, and then ray transmits 
in air of camera, passing through lenses and aperture, and 
finally shooting to the object world. The rendering result 
is solved by ray tracing algorithm with super-sampling 
and exposure function. In addition, we obtain the ren-
dering result, we obtain the refraction data of camera 
simulation from Optix system and display resulting image 
using OpenGL. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1.  System overview. 

3.1. System overview 
We depict our system flow, as shown in Figure 1. The 

first step prepares coherent geometry camera data for 
camera simulation from tabular camera lens data. The 
second step runs in GPU to calculate ray and lens surfaces 
intersection as the unit of pixel with camera position and 
orientation and outputs ray’s direction and position when 
rays pass through full camera lens system. 

 
 
 
 
 
 
 
 
 

Figure 2.  Lens surface data of Double-Gauss. 

3.2.  Camera simulation 
In lens design book, tabular description of lens surface 

and aperture suffices to profile the view of a lens system 
[12]. Every lens or aperture can be reverted its geometry 
of surface or aperture as shown in Figure 2. We defined 
geometric lens surface using tabular lens data for a se-
quential list of spheres that were arranged along with axis 
by their center points to curvature lens surface. We 
pre-computed the geometric data of each lens surface, 
such as lens cap top, and center of sphere of lens surface, 
to characterize full camera system and used it for light 

path calculation, as shown in Figure 3. 
 
 
 
 
 
 
 
 
 

Figure 3. 2D sketch of lens spheres of 
Double-Gauss. Red spheres are negative radius of 
lens surface. Blue spheres are positive radius of 
lens surface. 

To construct camera system, we utilized camera coor-
dinate system to define camera position and orientation. 
Line equation in vector form is used to describe light path. 
We exploited ray-sphere intersection algorithm [13] and 
Snell's law to calculate the refraction on each sphere 
surface. We defined our image plane using a fictitious 
plane outside of the last lens surface and center of film, �⃗. 
With given film size that was defined by user, each pixel �(�, �) in image plane can be calculated using camera 
coordinate system vector [��⃗ 	⃗ 
��⃗ ] as: �(�, �) = �⃗ + Filmsize/2 ∗ (���⃗ + �	⃗)          (1) 

In each pixel of image, we assume that a pixel receives 
different directional light paths from lens surface. To 
balance sampling quality, we randomly select light from 
lens surface and limit light inside of lens aperture. Every 
lens sphere can be defined as a set of points � with the 
radius of sphere � as in Equation (2) and Equation (3). 
To solve the point of ray-sphere intersection on �, we 
substituted line equation in Equation (3) and got the al-
gebraic Equation (4). � =  [�� �� ��], c⃗ = [�� �� �� ],                 (2) (�� − �� )2 + (�� − �� )2 + (�� − �� )2 = �2            (3) 

We solved Equation (4) as the quadratic equation and 
verified that the roots of � should be a real number using 
the discriminant of the quadratic equation, and verified 
ray-sphere intersection point with solved roots. 

� �0 = [�0 �0 �0] , �⃗ = [�� �� �� ]�� = �0 + ���  , �� = �0 + ���  , �� = �0 + ���(�0 − ��)2 + (�0 − ��)2 + (�0 − ��)2 = �2     �      (4) 

where �0����⃗  is start point, �⃗ is the line direction, � is the 
scale. As the vector form of line equation, we determined 
the refraction calculation according to Equation (5), 
where ���⃗  is the unit normal of ray-sphere intersection 
point that was obtained from intersection point to sphere 
center; �0����⃗  is the direction vector of incident ray; �1����⃗  is 
the direction vector of refracted ray; �1, �2 are refractive 
indices. We assumed the aperture is a virtual circle in 3D 
whose circle center is on 
��⃗  and orthogonal to 
��⃗ . When 
rays intersected with the virtual aperture, we did not cal-
culate the refraction; if rays did not intersect with virtual 
aperture, they would be blocked. 

� �1����⃗ = �1�2 �0����⃗ + Γ���⃗ ,
Γ = �1 − �1�2 �1 − ��0����⃗ ∙ ���⃗ �2� − �1�2 �0����⃗ ∙ �,����⃗ �             (5) 

3.3. Scene ray tracing 
Our ray tracing algorithm is implemented using OptiX 
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ray tracing engine, including ray launch, traversal, and 
shading in OptiX framework. In ray launch, the most 
important part is to implement ray generation program. 
Ray generation program weights the most in our work. 

Ray generation program is parallelly executed in each 
thread [14]. Each thread is distinguished with a unique 
rtLunchindex that represents pixel of rendering result and 
start point for ray tracing. 

Before ray tracing scene, we simulated rays launch 
from image plane passing through lens system using 
camera simulation method. If rays do not pass the lens 
system, it means ray was blocked by aperture or lens 
barrel, we assign it a background color, usually is black, 
for weighing accumulation result. To obtain the position 
and direction that we emitted from last lens surface, Op-
tiX offers rtTrace API to trace and shade scene color. 

For optimizing quality of resulting image, we exploited 
pixel pupil that was improved from exit pupil by Steinert 
et al. in [8]. They illustrated that different pixel locations 
are not imaged with full exit pupil because the effective 
aperture of vignetting. For interactive control, we im-
plemented adjustable sampling method that tests passive 
sampling ray in each iteration of pixel ray tracing thread. 
We consider the passive sampling rays that pass through 
lens system and record their 3D coordinate to compute 
average center of position gravity and average distributed 
range for calculating the radius of distributed range in 
each pixel. Pixel pupil center and radius will be converged 
in sampling iterations when lens system is unchanged. 

 
 
 
 
 
 
 
 
 
 

Figure 4.  Geometry of the irradiance [7]. 
 
In camera simulation, exposure was introduced in Kolb 

et al.’s work [7]. Pixel irradiance can be written as in 
Equation (6). Exposure function corresponds to pixel 
irradiance from a small region on last lens surface D, with 
a during of shutter open T, as shown in Figure 4, the ex-
posure can be written as in Equation (7). 

H(�′ )=E(�′ )T                             (6) 

E(�′ ) = ∫ "(�′′ , �′ ) �#� $ ′ �#� $ ′′‖�′′ −�′ ‖2�′′ ∈' �*′′            (7) 
We compute each solid angle over pixel normal and 

lens surface normal on �′  and �′′ . To solve the integral 
of exposure function, we use ray tracing algorithm that 
shads color from object world. The �′′  is easy to be 
found using ray sphere intersection with given �′  and a 
random direction. $′  and $′′  on �′  and �′′  can also be 
calculated after refraction calculation to obtain normal 
vector of lens surface on �′′ . Finally, the term �#� $ ′ �#� $ ′′‖� ′′ −� ′ ‖2  �*′′  is used to weigh the shaded result of 
sampling ray and ' is averaged by number of sampling 
rays to �*′′ . Finally, we ask users to define the exposure 
time as a gain value to compute Equation (6). 

OptiX maintains a traverser in mesh bounding box 
traversal step. In shade state of OptiX, closest hit program, 

any hit program, and miss hit program shads object sur-
face irradiance, shadow, and background. Closest hit 
program is executed whenever Optix finds the closest 
intersection between a ray and an object [15]. In closest 
hit program, we employ Phong shading algorithm with 
material template library illumination modes and cast 
shadow ray and second order ray to measure shading color. 

 
 
 
 
 
 
 

(a)          (b)              (c) 
Figure 5. Aberrations simulation. (a) Spherical 
aberration (b) Coma (c) Astigmatism. 

4. Experiments 
Our experiment exploited OptiX ray tracing engine 

using the NVIDIA CUDA GPU computing architecture. 
To combine with display of simulation result, we use 
OpenGL 3.1 and GLUT 3.7.6. For GUI design in OpenGL 
that was no complicated windows GUI environment, we 
utilize GLUI 2.35 to pass parameters from interface to our 
system. In GPU, we use NVIDIA Quadro 600 which has 
96 cores for highly parallel computing performance. Our 
development environment uses Microsoft Visual Studio 
2008 with NVIDIA CUDA 3.2 and  NVIDIA OptiX Ray 
tracing engine 2.5.1 in OS Windows 7 32bit. 

 
 
 
 
 
 
 
 
 
 
Figure 6.  Image distortion and Fish-Eye camera. 
 
First, we depicted light path in a single convex lens to 

illustrate simple aberrations as shown in Figure 5. We 
drew light path that was launched from a point with dif-
ferent directions. When lights pass through lens surface 
on places of different height, lights cause aberrations. As 
we sketch the light path, the rendering result of image 
distortion can be simulated in our rendering result window. 
We use a fish-eye camera model in [11] to emphasize 
distortion of scene as shown in Figure 6. The fish-eye 
camera shows barrel distortion, and the dark sides in 
corner are spaces that lens apertures occlude lights. 

 
 
 
 
 
 
 
 
 
 
 (a) Our result             (b) OptiX example 

Figure 7.  Comparison of depth of field. 
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The other import phenomenon of light, depth of field, 
is simulated in our system using Double-Gauss lenses 
model that is shown in Figure 7. In close up scene, depth 
of field can be approximated using Equation (8). DOF ≈ 2�� .+1. 2                     (8) 

where � is the diameter of circle of confusion; � is 
f-number; m is the magnification of lens. In Double-Gauss 
camera model, we assume coordinate of scene scales a 
unit to one pixel size that � can be assigned as 1mm. The 
depth of field can be calculated as 7.86 mm that was close 
to the value we observed in rendering result. OptiX pro-
vides a depth of field camera model that uses thin lens 
model, but it gets narrow depth of field and blur promptly. 

 
 
 
 
 
 
 
 
 
 

Figure 8.  Rendering result. 

System performance depends on number of pixels that 
needs to execute mesh traversal in ray tracing algorithm. 
In a thread, its work load per pixel, 94.9% of GPU ex-
ecution time was spent in OptiX ray-tracing; 4.2% spent 
in camera lens refraction simulation using GPU. When 
complexity of scene increases, the ray tracing algorithm 
launches rays for multi-order reflection on object surface 
or refraction in translucent object that can bring per frame 
performance down. For one sampling ray in each pixel, 
our system performance is 1.537 frames per second that 
uses Double-Gauss camera, as shown in Figure 8, and 
sampling 20 times in 640 x 640 resolution. 

 
 
 
 
 
 
 
 
 
 

Figure 9.  System overviews with GUI. 

As shown in Figure 9, our GUI interface lists camera 
parameters as in a real camera system to shot scene. We 
support kinds of camera lenses surface data for user to 
acquaint with inside of camera. Moreover, our system can 
modify lens surface data to create unique camera model. 

5. Conclusion and Future Work 

We simulated geometric multi-lens based on ray trac-
ing algorithm. This system demonstrates refraction using 
Snell’s law. In it, light path can be accurately calculated 
for aberrations and depth of field. Ray tracing algorithm 
accompanied with parallel computing can enhance effi-
ciency and performance in sampling method to curtail 

overhead of experiment. Camera simulation improves the 
realization of light characteristic and visualizes light 
transition path for observing and proposes new surmise. 

We need to acquire more light theory, such as 
wave-particle duality of light, to investigate diffraction 
that may cause in camera system. To accurately represent 
a pixel color in film, we need to launch large amount of 
sampling ray when relative focal point of each lens sur-
face is not on target. For depth of field effect, we need 
more sampling rays in blurred field, but fewer sampling 
ray can represent full light field because all lights are 
focused on a point. 

In camera simulation, ray transmissions can be de-
scribed in matrix form. Full camera lenses are treated as 
matrixes that can be pre-computed into single transmis-
sion matrix to decrease computing time. OptiX presents a 
general-purpose ray tracing algorithm framework. To 
optimize ray tracing algorithm and reduce stumbles, pure 
CUDA programming may speed up. 
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