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Abstract

In this paper we propose an object-driven online
segmentation system for mobile robots. Among exist-
ing tracking and segmentation methods, the methods
themselves are highly emphasized while properties of
objects are usually not exploited enough. We propose
an adaptive selection mechanism based on the proper-
ties of the objects to automatically choose an optimal
tracking algorithm. For textured objects, a tracking
algorithm which combines Lucas-Kanade tracker and
model based detector using Random Forests classifier is
adopted; for uniform objects, a color based tracker with
a smooth constraint enforcement is used to ensure a ro-
bust performance. Moreover, a two-step object segmen-
tation using Gaussian Mizture Models and graph cuts
18 applied to obtain detailed shape information. The
experimental results on a variety of objects show the
effectiveness of the adaptive tracking selection mecha-
nism. The system also yields very promising perfor-
mance in very challenging conditions with occlusions,
illumination changes as well as cluttered background.

1 Introduction and Related Work

One of the important tasks of mobile robots is to ex-
plore interesting objects, learn, and manipulate them
in an unstructured environment. In order to meet all
these object-driven requirements, the proposed system
should have the ability to adapt its tracker to vari-
ous objects with different properties and precisely lo-
cate the objects despite viewpoint changes, illumina-
tion variations, occlusions, cluttered background and
then extract detailed shape information for further
tasks such as object recognition, object grasping, etc.

Even the best existing systems still exhibit limita-
tions once dealing with such constraints of the real
world settings [1]. Numerous uniform object tracking
algorithms were proposed [2, 3, 4], among which color
information is a strong cue. However, when encounter-
ing textured objects, their performance decreased con-
siderably. The state of the art trackers [5, 6, 7] use dis-
tinctive features to cope with illumination changes, oc-
clusions as well as cluttered background do not specif-
ically target uniform objects. [8] utilized multiple cues
to overcome disadvantages of using a single feature.
However, the advantages of each feature were averaged.
[9] combined texture and color information while the
complexity of the algorithm made computation load
too high for realtime robotics applications. [10] used
an online appearance learning and adaptive algorithm
to attain a robust tracking result. However, the prior
knowledge about the properties of the objects is ig-
nored. Instead of finding a universal tracking algo-
rithm that works for every single object, we employ an
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adaptive tracking selection mechanism which is driven
by the properties of the objects. Besides, we are in-
terested in a service robot system that can be used
in Robocup@home applications and autonomously ob-
tain knowledge about the objects. Therefore, an on-
line method with automatic segmentation of interest-
ing objects is indispensable. For this task, existing
background subtraction methods such as [11] will fail
because of the constant change of the background.
Motion-based online segmentation [12] is also not an
option since the objects in the environment are static
without any motion information.

In our paper, we present a complete system for ro-
bust online object segmentation which can overcome
all above mentioned difficulties based on [13]. Fig.1
is the schematic overview of the system. The input is
a bounding box manually selected around an interest-
ing object. In order to examine the properties of the
object, the system first extracts the object and dis-
cards the contour. Then HOG features are generated
to determine if the object is textured or uniform. If the
textureness is below a threshold, the system will switch
to uniform object tracking, otherwise textured object
tracking is employed. For uniform object tracking,
a smooth constraint is added to Hue-Saturation seg-
mentation to enforce similarity among neighborhood
regions. For textured object tracking, motion based
detection and model based detection are combined to
track the object. Therefore, we obtain the location of
the object of interest. In the final step, for every object
model we refine object segmentation using Gaussian
Mixture Models (GMMs) and graph cuts. As a result,
detailed shape and contour information is extracted.
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Figure 1. System scheme



2 Approach and Implementation
2.1 Adaptive Tracking Selection Mechanism

Methods that combine multiple cues do not distin-
guish between different situations and also bear the dis-
advantage of heavy computation. Therefore we use one
of the most distinctive attributes, the textureness, and
treat different objects with different tracking methods.

Given a bounding box, we need to extract the object
from the initial bounding box using interactive segmen-
tation GrabCut [14] in order to accurately investigate
the property of the object. Both textured objects and
uniform objects have contour, hence the contour is not
an essential factor for measuring textureness and is dis-
carded.

Histogram of Oriented Gradients (HOG) features
[15] are used here to represent textureness of the ob-
ject. HOG features are generated within the object
using cell size 8x8, after which the property of the ob-
ject is deduced by the amount of HOG features. Thus,
we switch to either textured object tracking or uniform
object tracking according to a specified threshold.

2.2 Online Object Segmentation

For the task of observing objects from different view-
points, we need to update the object models online so
that it can adapt to the constant change in object ap-
pearance. We employ the state of the art algorithm
[6], which uses Local Binary Pattern (LBP) variants to
represent the texture of the object. The LBP features
are randomly distributed on an image patch, thus the
spatial information among the features is kept. Then
the image patches are used to train a Random Forests
classifier. Therefore the object tracking problem turns
into a foreground and background classification prob-
lem.

For uniform object tracking, color is a strong cue.
The other benefit of using color information lies in its
low computation cost. However, the color based meth-
ods are sensitive to lighting conditions and ignorant of
smoothness among neighborhood regions. Therefore
smooth constraint was added to enforce similarity.

The back projection image based on hue histogram
is compared with the hue-saturation joint histogram,
which is shown in Fig.2. As seen in this figure, the hue-
saturation histogram achieves better result than only
using hue histogram. Then we can label the pixel to be
either object, background, or undefined and assign the
label confidence to each pixel according to histgram
probability distribution. The labeled image only pre-
serves region property, thus we use a smooth constraint
to enforce similarity. For each pixel p, the similarity
with its neighborhood pixel g is calculated. If they are
very similar and the label confidence of ¢ is very high,
the neighborhood pixel ¢ will affect the pixel p and p
will have the same label as q. The label confidence of
q will also change accordingly.

After iterations until no change, the object is de-
termined. In Fig.2, the back projection image after
smooth constraint has less background noise and neigh-
borhood similarity enforced. Afterwards, we use blob
tracking to detect the bounding box of each new frame.

For robotics applications, object segmentation will
provide a cue for further tasks such as the object recog-
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nition, object manipulation. Most of the existing seg-
mentation algorithms need interaction from users [14].
To fully automate the process we use the object model
from tracking. To decrease the computation time,
segmentation is performed only for key frames. For
other frames, the confident segmentation from previ-
ous frame is used. If the displacement of current image
patch and previous image patch and the scale differ-
ence are larger than a specified threshold, the frame is
considered to be a key frame.

We first adopt GMMs for hard constraints to con-
struct the object and background models. With re-
gards to a pixel z,, the GMMs are defined as

K

P(xzy) = meN (wp|pk, Tr)
k=1

(1)

where Gaussian density N (z|ug, Xk ) is one component
with mean vector u; and covariance matrix X . 7y is
the weight. Here the mean vector uy is composed of
three values R, G, B, and K is the number of compo-
nents. K needs to be tuned according to scene, and
more textured scenes require higher values of K. For
textured objects K = 5 and for uniform object K = 1.
Since we have the initial model, we can assign each
pixel to each component in object GMMs and back-
ground GMMs. Then we use energy minimization as
a soft constraint to optimize the segmentation. The
energy minimization equation is

E(L) = AR(L) + B(L)
=\ Z R,(l,) + Z Bipg)  0(lpy 1) (2)

peP (p,9)EN

where R,(l,) describes the region property based on
GMMs models; By, 4) describes the coherence of sim-
ilarity within a region. X is a parameter that rela-
tively balance region property based on GMMs versus
region property based on similarity. Segmentation can
be now estimated as a global minimization using graph
cuts ¢ = argminy, E(L) to have the foreground object
and background. Here we confine background to be
a region surrounding the image patch instead of using
the region of the whole image to speed up the com-
putation. We also use the output of the segmentation
result as a refined input of the online model for more
precise tracking.

3 Experiments and Results

For experiments we randomly picked up 75 different
objects and put them in diverse scenes with various
conditions. In total we tested on 6920 frames and used
two criteria: center distance error (E) and score (S)
defined in Eqn.3 and Eqn.4. The ground truth was
manually labeled frame by frame. The implementa-
tion is written in C++ incorporated into MATLAB
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Figure 3. Performance on a textured object
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We used 25 objects in 1500 frames for testing the adap-
tive selection mechanism and determining the optimal
threshold. Two examples of system performing on a
textured object and a uniform object are shown in
Fig.3 and Fig.4, respectively. (a) is the original im-
age with object of interest selected by a bounding box,
(b) and (c) are the segmented object, (d) encodes tex-
ture information, (e) is the extracted contour and (f)
is the texture of the object without contour inference.
The two (f) images show that the uniform object has
a low textureness (textureness: 0.1256) compared to
the textured object (textureness: 0.4269). The two
graphs compare the performance of 4 trackers: uni-
form tracker, textured tracker [6] (TLD), an improved
realtime L1 tracker [7] (L1), and compressive tracker
[16] (CT). For the textured object, the uniform tracker
performs worst since it mainly relies on color infor-
mation, thus can not cope with very textured objects
with complex color distribution. The textured tracker
achieves very promising results with respect to tex-
tured objects. CT fails when scale changes. For the
uniform object, uniform tracker outperforms the other
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Figure 4. Performance on a uniform object

trackers with a center distance error always below 15
pixels and very high stable score. L1 has a growing
distance error as more frames get processed. Textured
tracker experiences performance decrease for uniform
objects. Consequently, we can deduce that combin-
ing uniform tracker and textured tracker dependent on
the properties of the objects is an effective method to
achieve robust performance.

For optimal textureness threshold determination, we
used a selection error equation as
Sy e(wi <)+ 3%, e > 1)

N

L(t) = (5)

where
ifx; <tA Su(l) < St(’L)
otherwise

(6)

1 if x> tASu(i) > Se(i)

i >1) =
e(zs ) 0 otherwise

(7

For each object with its estimated textureness z;,
Sy (i) and S¢(4) are the average scores obtained respec-
tively by the uniform and textured tracker. N is the
total number of tested objects. For a given texture-
ness threshold ¢, an object with textureness below it
activates to uniform object tracking, while above it
textured object tracking is activated. By comparing
the ground truth of the training dataset with track-
ing algorithms performance, the selection error can be
calculated. The textureness threshold with lowest se-
lection error value is the optimal threshold. As we can



Figure 6. Online segmentation results

see from Fig.5, the optimal textureness threshold is
chosen to be 0.2.

Table 1. Segmentation performance evaluation

(S) indicates a single object, and (M) indicates multiple objects

Scene vs Textureless Textured Textureless Textured
Object | (8) ) () (D)
Uniform 98.2% 94.8% 96.2% 95.0%
Textured | 98.2% 94.6% 94.6% 88.4%
Total 98.2% 94.7% 95.4% 91.7%

Table 1 presents segmentation performance of uni-
form objects and textured objects in various scenes.
The columns represent two types of objects, uniform
and texutured, and the rows the types of scenes: tex-
tureless background with a single object, textured
background with a single object, textureless back-
ground with multiple objects, textured background
with multiple objects. The overall performance is very
promising with very high precision rates above 90%.
We also derive the conclusion that in most cases, it is
easier to segment the objects from textureless scenes
than from textured scenes and it is easier to segment
the object within single object background than mul-
tiple objects background. In case of large viewpoint
changes and occlusions, the algorithms can still achieve
robust segmentation performance, which is demon-
strated in Fig.6. The computation rate is 10.80 fps
for uniform objects and 5.32 fps for textured objects.
Some further optimizations will ensure it can be used
in realtime robotics applications.

References

[1] A.Yilmaz, O. Javed, and M. Shah, “Object tracking:
A survey,” ACM Comput. Surv., vol. 38, no. 4, p. 13,
Dec. 2006.

[2] D. Comaniciu, P. Meer, and S. Member, “Mean shift:

A robust approach toward feature space analysis,” IEEE

Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 24, pp. 603-619, 2002.
J. Ning, L. Zhang, D. Zhang, and C. Wu, “Robust

mean-shift tracking with corrected background-weighted

histogram,” Computer Vision, IET, vol. 6, no. 1, pp.
62 —69, january 2012.

P. Fua, and V. Lepetit, “Gradient response maps for

real-time detection of textureless objects,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence,

S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab,

382

5]

(8]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

0.65

0.6

0.55

o
o

Selection error
2 &

o
@
&

°
©

°
N
&

L
0.4 05

0z o3
Threshold (t)

Figure 5. Selection error plot
vol. 34, no. 5, pp. 876-888, May 2012.
P. Viola and M. Jones, “Rapid object detection using
a boosted cascade of simple features,” in IEEE Com-
puter Society Conference on Computer Vision and Pat-
tern Recognition, vol. 1, 2001, pp. I-511 — I-518 vol.1.
Z. Kalal, J. Matas, and K. Mikolajczyk, “P-N learn-
ing: Bootstrapping binary classifiers by structural con-
straints,” Computer Vision and Pattern Recognition,
IEEE Computer Society Conference on, vol. 0, pp. 49—
56, 2010.
C. Bao, Y. Wu, H. Ling, and H. Ji, “Real time ro-
bust 11 tracker using accelerated proximal gradient ap-
proach,” in Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, june 2012, pp.
1830 —1837.
R. Collins, Y. Liu, and M. Leordeanu, “Online se-
lection of discriminative tracking features,” Pattern
Analysis and Machine Intelligence, IEEE Transactions
on, vol. 27, no. 10, pp. 1631 —1643, oct. 2005.
J. Ning, L. Zhang, D. Zhang, and C. Wu, “Robust
object tracking using joint color-texture histogram,”
International Journal of Pattern Recognition and Arti-
ficial Intelligence, vol. 23, no. 07, pp. 1245-1263, 2009.
D. A. Klein, D. Schulz, S. Frintrop, and A. B. Cre-
mers, “Adaptive real-time video-tracking for arbitrary
objects,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2010, pp. 772-777.
7. Zivkovic, “Improved adaptive gaussian mixture model
for background subtraction,” in Pattern Recognition,
2004. ICPR 2004. Proceedings of the 17th Interna-
tional Conference on, vol. 2, aug. 2004, pp. 28 — 31.
J. Mooser, S. You, and U. Neumann, “Real-time ob-
ject tracking for augmented reality combining graph
cuts and optical flow,” in Proceedings of the 2007 6th
IEEE and ACM International Symposium on Mized
and Augmented Reality, ser. ISMAR ’07. Washing-
ton, DC, USA: IEEE Computer Society, 2007, pp. 1-8.
X. Wang, M. Rudinac, and P. P. Jonker, “Robust
online segmentation of unknown objects for mobile
robots,” in 7th International Conference on Computer
Vision Theory and Applications, VISAPP, 2012.
C. Rother, V. Kolmogorov, and A. Blake, “’Grab-
Cut”: interactive foreground extraction using iterated
graph cuts,” in ACM SIGGRAPH ’04. New York,
NY, USA: ACM, 2004, pp. 309-314.
N. Dalal and B. Triggs, “Histograms of oriented gradi-
ents for human detection,” in IEEE Computer Society
Conference on Computer Vision and Pattern Recogni-
tion, vol. 1, june 2005, pp. 886 —893 vol. 1.
M.-H. Y. Kaihua Zhang, Lei Zhang, “Real-time com-
pressive tracking,” in Proceedings of the 12th European
Conference on Computer Vision, 2012, pp. 864-877.



