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Abstract

We propose an instant reconstruction of 3D surface
meshes for a set of images and their camera poses and
sparse 3D points computed by structure from motion
(SfM). We aim at the proposed method to be compati-
ble with an incremental structure from motion system
as it can immediately generate the 3D surface model
seen from the latest view point recovered by SfM. The
proposed method consists of four steps: reference and
target image selection adaptive to so-far recovered sur-
face models; triangular patch initialization by taking
into account the scene structures; fast 3D pose estima-
tion of each triangular patch using inverse composi-
tional image alignment (ICIA); surface generation by
robustly refining the 3D triangular patches and inte-
grating into pieces of surface meshes. The surface re-
construction results are shown on real image datasets
of indoor as well as outdoor scenes and compared with
the state of the art approach.

1 Introduction

3D reconstruction of camera poses and points from
a set of camera images becomes a feasible task accord-
ing to the success of incremental structure from mo-
tion (SfM) pipelines [15, 19, 9]. The recovered camera
poses and points are often used as the input for gen-
erating dense 3D points [5, 11] and 3D surfaces [8, 18]
to provide richer scene visualization for entertainment
applications as well as digital archiving of historical
heritages.
For incremental SfM from collection of images, the

one of the breakthroughs is Bundler [14, 15] which re-
constructs the scene in a seed-and-grow manner by re-
peating the addition of new camera poses and points
and bundle adjustment. In more detail, Bundler pre-
computes feature tracks using wide baseline match-
ing [10] with RANSAC, then, initially recovers camera
motion and 3D points by the five-point algorithm [12],
grows by adding new camera poses by solving 3D-2D
pose problem (DLT) [7] and refines by bundle adjust-
ment [17, 16]. The efficiency is further improved in Vi-
sualSfM [19] by incorporating with the power of multi-
core CPU and GPU.
One of the successful and popular approaches for

surface reconstruction combining with the sparse SfM
is to compute denser point clouds by patch-based mul-
tiple view stereo (PMVS) [5], then apply Poisson sur-
face reconstruction [8] and finally generate 3D meshes.
Since PMVS provides robust 3D point clouds by con-
servatively starting from the stable sparse 3D points,
the final surface models are very accurate. Vu et
al. [18] recently proposed a surface reconstruction
technique which provides 3D surface models with im-
pressive quality. This method generates 3D surface

meshes by extracting the boundary surface comput-
ing the intersections of viewing rays from cameras and
the 3D Delaunay tetrahedras generated from 3D point
clouds. The boundary extraction is formulated as a bi-
nary labelling problem where a unique solution can be
efficiently found by a standard graph-cut algorithm.
The 3D surface meshes are further refined by taking
into account photo consistency. Since those recent
state-of-the-art techniques aim at providing accurate
and complete models for a fixed set of images, efficiency
of computation and flexibility to the online input are
out of focus.
In contrast, we are particularly interested in com-

bining with the incremental SfM process as the system
can output the surface models as soon as new image
is processed. Such a system is suitable for recover-
ing a midium-scale scene, e.g. a room and a building
captured by a few users. Towards a system performing
fully incremental and online 3D reconstruction, we pro-
pose the instant 3D surface reconstruction for a small
subset of images and their camera poses and sparse 3D
points. The main contribution is to instantly accom-
plish 3D surface reconstruction of the reference image
based on the selection of the reference and target cam-
eras adaptively w.r.t. the 3D surface models so-far re-
constructed and on the fast estimation of 3D poses of
each patches. Figure 2 briefly illustrates the pipeline
of the proposed method.

2 Instant surface reconstruction

In this section, we propose the fast and robust sur-
face reconstruction algorithm for generating 3D sur-
face meshes from sparse input images. The proposed
method consists of the folloiwng four steps:

(1) Reference and target images are adaptively deter-
mined w.r.t. the scene so-far recovered for sup-
pressing computational cost.

(2) Small-triangle patches are generated from the ref-
erence image and 3D poses of the patches are ini-
tialized by using the sparse 3D points of SfM;

(3) The patch poses are refined by examining the
photo consistency using the reprojection of the
patch to the spatially neighboring target images;

(4) The patches are refined and integrated into larger
pieces of surfaces.

2.1 Reference and target image selection

Every image having its camera pose recovered by in-
cremental SfM is a candidate for the reference image
to proceed surface reconstruction in our approach. A
candidate image is accepted to be the reference image
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Figure 1. Partial pipeline of the proposed method

to proceed for the 3D surface generation if the image is
not occupied by the reprojected surface meshes already
reconstructed. This reference image selection is benefi-
cial not only for computational cost but for visual qual-
ity since it avoids to generate overlays of duplicated 3D
patches. The order of examining the candidate follows
the order of incremental SfM reconstruction.
For the reference image, we pick the target images

which are used for 3D patch pose estimation in Sec-
tion 2.3. We select three images as the target images
of examining the photo consistency according to the
size of overlapping view fields with the reference im-
age computed from the number of 3D points sharing
in common. In more detail, the cameras already re-
covered by SfM sharing sufficient number of 3D points
with the reference camera are sorted according to base-
lines to the reference as the distant camera is better
ranked. We select three images as the target and if
there are less than three satisfying the above condi-
tion, the reference image is cancelled and another one
is selected in the candidate list.

2.2 3D triangular patch initialization

The reference image is divided into the pieces of tri-
angular patches by using Delaunay triangulation for
Harris points [6] detected on corners and edges. Note
that we use both corner-like and edges-like features in
contrast to popular tracking methods using corner-like
features only. As a post-processing to remove too many

features detected on edges, we subsample them as ev-
ery distance among neighboring points is larger than
a predefined threshold. After this subsampling, we
use the Delaunay triangulation for these Harris points.
There can be too sharp triangular patches, often vicin-
ity to the image borders, due to the design of Delau-
nay triangulation. We remove such triangular patches
since they are infeasible for estimating their 3D poses
and give slow convergence in the iterative optimization
stage.
After generating the triangular patches on the ref-

erence image, we estimate the 3D pose of each patch
independently. By using the camera pose of the ref-
erence image, we compute the 3D poses of patches by
estimating depths of three vertices of the triangle. In
more detail, in order to estimate the initial depth of
vertices, we use the (SURF) feature points in the ref-
erence image associated to the SfM 3D points. For
the patch containing at least one feature point associ-
ated to the 3D point, we compute the initial depth of
vertices by averaging depth of the SfM feature points.
For the patch not containing any SfM feature point,
we give the value of average depth of nearby patches.
We repeat this initialization until every patch has its
initial depth.

2.3 3D triangular patch estimation

After the initialization, the depths of vertices of the
triangular patches are further refined by examining the
photo consistency using the reprojection of the patches
to its spatially neighboring target images. Using the
target images, the depths of vertices are optimized by
minimizing the cost function,

E(d) =
∑

n

∑

u∈P

(IR(u)− In(Tn(u,d)))
2 (1)

where d is a 3-dimension vector composed by inverse
depths of three vertices of each triangular patch, u is
a 2D image coordinates of a patch P on the reference
image, n indicates the index of target image, T () is a
mapping function of a 2D point on the reference image
to the target image. IR() and In() are image inten-
sities of reference and target images as a function of
2D image coordinates. This minimization problem is
solved for each patch independently by using Gauss-
Newton method which can be efficiently implemented
with ICIA technique [1]. Since there can be erroneous
3D pose estimation due to weak texture, occlusions and
illumination changes, we cancel the depth estimation
of such patches by examining whether the optimiza-
tion is converged in a predefined maximum iteration
and later recover them using the depths of the neigh-
boring patches stably estimated in Section 2.4.

2.4 3D patch refinement and integration

First, we seek for the patch with no depth sur-
rounded by three patches whose depths are success-
fully estimated. The depths of vertices of this patch
are recovered by averaging the depths of each pair of
corresponding vertices (Figure 2 (a)). Next, we seek
for the patch with no depth surrounded by two patches
patches successfully recovered. If these two patches lie
on a plane, the depths of vertices of this patch are com-
puted as they fit on it (Figure 2 (b)). We repeat these
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(a)

(b)

Figure 2. Patch refinement. (a) Missing patch re-
covered by three surrounded patches. (b) Missing
path recovred by two neighboring patches lying
on a 3D plane.

Figure 3. Example of 3D patches before refine-
ment and integration (top) and after (bottom).

two processes until no new patch is updated accord-
ingly.
Finally, we merge the common vertices of neighbor-

ing patches on the reference image and integrate into
pieces of surface meshes if the distances among the ver-
tices in 3D are under the threshold computed using the
mean depth of all feature points (Figure 3).
As a whole system, when the processes of surface

generation for a reference image are finished, we wait
for a new image, camera pose and 3D points computed
by SfM and then start running the surface generation
by setting the new image as a reference image.

3 Experimental results

We implemented the 3D surface reconstruction algo-
rithms by C++ using open source libraries: OpenCV [2]
as a basic computer and S-Hull [13] for Delaunay tri-
angulation. All the experiments are run on a standard
PC composed of Intel Core i7 3.33GHz CPU and 32GB
RAM.
The camera poses and sparse 3D points are com-

puted by VisualSfM [19] and used as the input data
for surface reconstruction. We use PMVS2 [4, 5] both

Dataset Desk Vienna DiTrevi
#Images 84 82 168
PMVS (sec.) 127 225 278
Proposed (sec.) 18 30 18

Table 1. Computational time.

for comparing the resulted 3D models quantitatively
and for evaluating the computational efficiency. As a
comparison of surface models, it is also possible to use
non-textured 3D surface meshes obtained by Poisson
surface reconstruction bundled in Meshlab [3] but vi-
sual comparison of non-textured wire-frame models re-
quire some skill. Even though PMVS2 provides dense
point clouds only, we take the advantage of output with
colors.
Figure 4 shows, from left to right, an example of

input images, camera poses and sparse 3D points by
SfM, 3D surface mesh models obtained by the pro-
posed method, and colored dense 3D points obtained
by PMVS. Table 1 summarizes the number of input im-
ages, computational time on the proposed method and
PMVS for each dataset. The improvement on com-
putational time is significant for every dataset while
the visual quality of resulted model is comparable or
even better. Furthremore, another advantage of the
proposed method is on the online visualization of the
surface models, i.e. we can visualize them as soon as
new reference image is processed.

4 Concluding remarks

We proposed a method for instantly reconstructing
3D surfaces from images with camera poses and sparse
3D points obtained by SfM. The reference camera se-
lection so as to have minimum overlaps and the fast
computation of 3D triangular patches by using ICIA
bring a significant improvement on computational effi-
ciency.
The further comparisons with other state-of-the-art

surface reconstruction and quantitative evaluations are
left as future works. We are currently working on the
system level integration to the online SfM algorithm
in order to achieve a fully online 3D reconstruction
system.
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