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Abstract 

Stereo correspondence computes disparity map needed 
by many high-level computer vision tasks. Recently local 
stereo approaches show their ability matching global 
while keeping efficiency. But it still deserves further re-
search for higher performance. In this paper, we propose 
a fast edge-aware cost aggregation strategy. It constructs 
1D support window based on spatial and gradient infor-
mation of input image, and uses a two-pass scheme to 
smooth the disparity space image. We also propose an O(1) 
implementation independent of window size for this 
scheme. A similar edge-aware median filter is proposed 
for the post-processing step. According to the evaluation 
results on the Middlebury stereo dataset, our approach 
outperforms the state-of-the-art local methods in accuracy 
and efficiency. 

1. Introduction 

Stereo correspondence as an important vision problem 
estimates disparities from a given stereo image pair. Lots 
of work on the topic has been surveyed and evaluated in 
[1][2]. According to [1], most stereo algorithms consist of 
four steps: matching cost computation, cost aggregation, 
disparity computation and disparity refinement. They can 
be categorized into two major classes: local methods and 
global methods. Unlike most computationally expensive 
global stereo methods, local methods are usually efficient 
and easy to implement. 

The major challenge in local stereo is to find an appro-
priate support window. An ideal support window should 
be large enough to capture sufficient intensity variation for 
handling textureless regions. At the same time, the win-
dow should be small enough not to include pixels of 
different disparities in order to avoid the well-known edge 
fattening effect at disparity discontinuities. In order to 
overcome the challenge, many local stereo methods have 
been proposed. 

In the early development stage the multiple-window 
methods [3], which selected the lowest-cost support win-
dow from a set of pre-defined windows, and 
variable-window methods [4][5], which computed an op-
timal support window for each pixel, were proposed. But 
the results suffer from the edge-fattening problem. 

The filter-based methods were introduced by Yoon and 
Kweon [6], which improved the accuracy much. The 
method is actually an application of the bilateral filter [7] 
in the domain of stereo correspondence. The idea is that 
pixels having a color similar to the center pixel are likely 
to lie on the same object, and therefore have similar depth 
(disparity). A pixel inside the support window receives a 
high support weight if it is close in both color and spatial 

distance to the central pixel of the window. This strategy 
considerably reduces the edge fattening problem when 
using large window sizes and accordingly leads to better 
quality results. But Yoon and Kweon used a naïve imple-
mentation of the bilateral filter, which was slow and 
diminishes the runtime advantage of local over global 
methods. Richard et al. [8] realized this shortcoming and 
suggested an approximate but fast (real-time) implementa-
tion of the filter. However, their solution could not even 
get close to the state-of-the-art results. 

Recently, Rhemann et al. [9] utilized the image guided 
filter [10] to filter cost volume and achieved 
state-of-the-art results among local methods. Because the 
guided filter performs a first-order local linear modeling, 
it is computationally much faster than bilateral filter. 

In this paper, we will present an efficient stereo corre-
spondence approach. It has three contributions: 

(1) We propose a fast edge-aware cost aggregation 
based on an iterative two-pass 1D filter. It performs 
cost aggregation in succession on horizontal and 
vertical windows. 

(2) We also propose a fast implementation for the cost 
aggregation so that its computation is independent 
of the window size. 

(3) We use similar ideas to design an edge-aware me-
dian filter for post-processing. 

We will describe the details in the following sections. 

2. Algorithms 

The outline of our stereo matching algorithms is shown 
in Figure 1. We select the left image as target in this paper. 

We use a similar method with that used in [9] for 
matching cost computation because it is robust to illumi-
nation changes. The difference is that we add truncated 
absolute difference of the vertical gradient: 
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Here, x�  is the horizontal gradient and y�  is the 
vertical gradient. The parameters �  and �  balances 
the color, the horizontal gradient and the vertical gradient 
terms, and c� , g�  are truncating values which control 
the limit of the matching cost to avoid the later aggrega-
tion is polluted by noisy points.  

Then the proposed cost aggregation approach is used on 
the initial disparity space image C(x,y,d). The details will 
be presented in Section 2.1. And an O(1) implementation 
of cost aggregation independent of window size is pro-
posed in this section. In the next step, the 
Winner-Takes-All (WTA) strategy is applied for the dis-
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parity selection. 
The same process is carried out on the right image in 

order to detect occlusions. Next we designed a 
post-processing procedure to optimize the disparity map. 
The process is described in Section 2.3. 
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Figure 1. Outline of the proposed stereo corre-
spondence algorithm. We can obviously see that 
our cost aggregation method filters the initial dis-
parity space image (DSI) with edges preserved 
well. And the post-processing process including 
sub-pixel refinement, occlusion detection and fill-
ing effectively optimize the disparity map. 

2.1. Proposed fast edge-aware cost aggregation 
As we briefly mention in the introduction, the key of 

cost aggregation is finding a well-suited support window 
to contain as many pixels as possible at the same depth. 
However, without depth information beforehand, the sup-

port region for a pixel can only be adequately derived 
from the raw input images. Just like gradient is used to 
detect edge, we can judge whether two pixels stay in the 
same object, or at the same depth by the accumulation of 
the gradients of the pixels between them. Under that idea, 
we propose a local support window construction method. 

Unlike the most existing window-based methods fixing 
the window size (e.g. SSD [1], bilateral filter [6], guided 
filter [9], etc.), our method uses a shape-adaptive window 
to reliably capture local image structure. The process is 
based on an iterated two-pass 1D filter, as shown in Figure 
2. 1D filter has two advantages: 1) because considering 
horizontal or vertical bounds every time, it can adapt the 
local shape better; 2) It has a lower computation complex-
ity compared with 2D filter. 
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Figure 2. Two-pass cost aggregation for the center 
pixel p. The first pass filters the cost in the hori-
zontal direction. And the result is filtered by the 
second pass in the vertical direction. All those pix-
els influencing the cost of the pixel p are marked in 
color. 

 
We first look at the horizontal pass. In x direction, we 

decide the horizontal coordinate �
px  of the left bound of 

a pixel (xp,yp) as 
}),,(0|min{ ryxxTandxxxx pppp �
�� ����� , (2) 

where �T  is a judgment function whether two pixels lie 
at the same depth and r controls its confidence level. �T  
is defined as 
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Here, �T  consists of two parts: spatial distance and 
accumulation of absolute values of gradients. The gradi-
ents of different channels will be computed respectively 
and added together. The parameter �  balances the dis-
tance and the gradients’ sum terms. 

The horizontal coordinate 

px  of the right bound is 

computed by the corresponding formula: 
}),,(|min{ ryxxTandwxxxx pppp �
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where w is the image width. 
T  is defined as 
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Thus the aggregated cost is average over the horizontal 
segment: 
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The vertical cost aggregation is carried out on the result 
of the horizontal aggregation. The lower bound �

py  and 

the upper bound 

py  are calculated in similar methods. 

Thus a two-pass filter is completed. Figure 3 shows four 
examples of support windows. From the figure, we can 
see that edges of objects are preserved well. 

 

 
Figure 3. Samples of edge-aware support windows. 
The center pixel is marked in blue rectangle. The 
red represents support window. 

 
In order to have better filtering effects, our two-pass 

aggregation can be done iteratively. Our experiments iter-
ate the process twice, which trades off accuracy and 
efficiency well. Note that the second aggregation should 
have a smaller window size by decreasing the confidence 
level r because the disparity space image becomes smooth 
after the first aggregation. We let r for the second iteration 
be half of the first one: 2/01 rr � . 

Instead of summing raw matching costs in (6) directly, 
we propose an efficient O(1) implementation to accelerate 
the aggregation over irregularly shaped regions. Given the 
pixelwise raw matching cost C(x,y,d), we first build a 
horizontal integral image Sh(x,y,d): 
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Here Sh(x,y,d) can be iteratively computed from 
Sh(x-1,y,d) with only one addition. Thus we can rewrite 
the equation (6) into 
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Obviously our new filtering formula has nothing to do 
with the support window. When xp = 0, Ch(xp,yp,d)=0. The 
vertical aggregation can be of course computed by this 
fast strategy, too. 

2.2. Post-processing with proposed edge-aware 
median filter 

Our post-processing does two things: 1) obtaining a 
sub-pixel disparity map; 2) handling occluded pixels. 

As shown in Figure 1, on the one hand we apply quad-
ratic polynomial interpolation on the disparity map of the 
left image for sub-pixel refinement, as shown in [11]. On 
the other hand, we mark a pixel in the left disparity map as 
occluded by left-right consistency checking. 

For the unoccluded pixels, the sub-pixel disparities are 
their final values. For the occluded pixels, to fill them, we 
first assign the lowest disparity value of the spatially clos-
et non-occluded pixels which lie on the same scanline to 
them, obtaining an initial filling result. Then an 
edge-aware median filter is applied on the initial filling 
result to remove the streak-like artifacts in the disparity 
map. The edge-aware median filter is similar with the one 
used in the cost aggregation. The difference is that the 
median value is selected as the new disparity in the win-
dow instead of averaging them: 
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Similarly we also take the median value in the vertical 
direction. In order to get a better result, we set a different 
value for the parameter �  from that in the cost aggrega-
tion. Compared with the weight median filter used in [9], 
our edge-aware median filter has lower computation com-
plexity and better performance. At last, a normal median 
filter is used to obtain the final disparity map. 

3. Experimental Results 

We tried different parameter settings and decided to use 
the following values for all the experiments: {� , � , c� , 

g� , r0} = {0.11, 0.75, 9/255, 2/255, 80}. The parameter 
�  for cost aggregation is 150 and the parameter �  for 
post-processing is 200. The larger �  brings the smaller 
support region. 

We implemented our method on the graphics card using 
CUDA. All experiments were conducted on an nVidia 
GeForce GTX560 Ti graphics with 1G display memory 
whose CUDA core number is 384. 

We evaluated our algorithms on the Middlebury stereo 
benchmark [1]. Our approach gives quite excellent results 
ranking 8th out of 140 methods at the time of submission 
when the error threshold is set to 5.0. And more im-
portantly as far as we know, our method is the best local 
filter-based stereo method outperforming the original im-
plementation of [6]. Table 1 gives the comparisons 
between our method and several other local stereo meth-
ods. And Figure 4 shows our results and the difference 
against the ground truth maps. 

The average time of our method and its competitors are 
also shown in Table 1. Runtime data of the methods are 
taken from [9]. The run time for the method CostFilter [9] 
was acquired on GeForce GTX480 graphics card with 480 
CUDA cores, and for the other methods on Quadro 
FX5800 with 240 CUDA cores. Considering the distinc-
tion of cores, we claim that our approach is the fastest one 
among these local methods. 
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Figure 4. Results on Middlebury dataset. The first row is the left input image (Tsukuba, Venus, Teddy, and Cones, 
respectively). The second row shows the results computed by our algorithm. The third row shows a comparison 
against the ground truth by plotting disparity errors larger than 0.5 pixels. 
 
Table 1. Rankings on Middlebury on-line database. 
Method Rank Avg. 

Error 
(%) 

Error non-occluded pixels (%) Avg. 
Runtime 

(ms) 
Tsukuba Venus Teddy Cones 

Ours 8 10.9 11.5 2.7 9.75 5.23 52 
CostFilter[9] 26 12.8 11.7 6.43 18.1 13.7 65 
GeoSup[12] 55 15.9 23.1 7.11 20.4 15.0 16000 
DCBGrid [8] 86 18.5 22.8 3.97 24.0 18.2 95.4 

AdaptWeight[6] 89 18.1 18.8 8.40 23.9 19.7 8550 

4. Conclusions 

We have presented a novel efficient cost aggregation 
method for local stereo matching. It smoothes the dispari-
ty space image based on an iterative two-pass 1D filter. 
The filter has shape-adaptive window size constructed by 
spatial and gradient information of the original input im-
ages. Theories and experiments prove its edge-aware 
property and the success of cost aggregation. We also 
propose a constant time implementation for this cost ag-
gregation independent of support window size. We use a 
similar idea to design an edge-aware median filter for 
post-processing. 

Experimental results on the Middlebury stereo bench-
mark show our method outperforms the other local stereo 
matching methods in accuracy and efficiency. Because it 
is both accurate and fast, it will be useful in many circum-
stances. 
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