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Abstract

In this paper we propose to tackle human actions
indexing by introducing a new local motion descriptor.
Our proposed descriptor is based on two modeling, a
spatial model and a temporal model. The spatial model
is computed by projection of optical flow onto bivari-
ate orthogonal polynomials. Then, the time evolution
of spatial coefficients is modeled with a one dimension
polynomial basis. To perform the action classification,
we extend recent still image signatures using local de-
scriptors to our proposal and combine them with linear
SVM classifiers. The experiments are carried out on
the well known KTH dataset and on the more challeng-
ing Hollywood2 action classification dataset and show
promising results.

1 Introduction

Space-time feature descriptors [12, 6, 9] have become
essential tools in action classification. In this paper we
propose a new space-time motion descriptor based on
polynomial decomposition of the optical flow. Our de-
scriptor is localized spatially and temporally in a space-
time tube, in order to capture characteristic atoms of
motion. We propose to model the vector field of mo-
tion between two frames using projection on orthog-
onal polynomials. Then, we model the evolution of
polynomial coefficient along time. We name this novel
descriptor Series of local Polynomial Approximation of
optical Flow (SoPAF ).

The paper is organized as follows. In section 2 we
present the most popular space-time feature descrip-
tors in the literature. Then, in section 3 we present our
descriptor. Finally, in section 4 we carry out experi-
ments on two well known action classification datasets.

2 Related work

The recognition of human action and activity is an
important area in several fields such as computer vi-
sion, machine learning and signal processing. A pop-
ular way of comparing videos is to extract a set of
descriptors from video and then find a transformation
that maps the set of descriptors into a single vector
and then measure the similarity between the obtained
vectors (for example in [12]). In the past ten years,
several descriptors have been proposed.

2.1 Video descriptors

Several descriptors used for action classification con-
sist in the extention to video of still image descriptors,
in particular the well known (Lowe 2D) SIFT descrip-
tor [7]. This descriptor relies on a histogram of orien-
tation of gradient. Many other descriptors are close to

the SIFT. The most commonly used are the Histogram
of oriented gradient (HOG) [1], the Histogram of Ori-
ented Flow (HOF) [1] and the Motion Boundary His-
togram (MBH) [1]. HOG is very similar to SIFT, but
is not only computed on salient points. In the same
way, Dalal et al also propose the Histogram of Ori-
ented Flow (HOF) [1] which is the same as HOG but
applied to optical flow instead of the gradient. They
also propose the Motion Boundary Histogram (MBH)
that model the spatial derivative of each component of
the optical flow vector field with a HOG.

Recently, Wang et al [12] propose to model these de-
scriptors along dense trajectories. The time evolution
of trajectories, HOG, HOF and MBH is modelled using
a space time grid along trajectories. To our knowledge,
they obtained state of the art results.

The descriptor we propose here is inpired from HOF
and dense trajectories. Our model is based on a poly-
nomial approximation of the field rather than a his-
togram. We approximate the time evolution thanks
to an approach based on function regression. In our
approach, decriptors are not extracted only on salient
points, we use a dense extraction with a regular spatial
step between each descriptor.

2.2 Signatures

Once a set of descriptors is obtained from the video,
a signature has to be computed for the whole video.
The most common method for computing signatures
is called the “Bag of Words” (BoW) approach [10].
Given a dictionary of descriptor prototypes (usually
by clustering a large number of descriptors), the his-
togram of occurrences of these prototypes within the
video is computed.

In this paper, we consider a compressed version of
VLAT [8] which is known to achieve performances close
to state of the art in still images classification when
very large sets of descriptors are extracted from the im-
ages. This method uses an encoding procedure based
on high order statistics deviation of clusters. In our
case, the dense sampling both in spatial and tempo-
ral directions leads to highly populated sets, which is
consistent with the second order statistics computed in
VLAT signatures.

3 Series of Polynomial Approximation of
Flow (SoPAF)

We propose to model the vector field of motion be-
tween two frames using projection on an orthogonal
basis of polynomials. This polynomial model is used
in [4] to recognize movements in a video. The mod-
eling is applied to the entire field and each frame is
processed separately.
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Figure 1: Localisation in the space and space-
time domain ; (a) Localisation in the space do-
main ; (b) Localization example in the space-
time domain with τ = 3

Since motion can succesfully be modeled by poly-
nomials, we propose to use such models on a local
neighborhood in order to obtain densely extracted lo-
cal motion descriptors. We use two successive poly-
nomial models. At first, we model the spatial vector
field. Then, time evolution of spatial coefficients are
modeled.

3.1 Spatial modeling using a polynomial basis

Let us consider the descriptor M(i, j, t) located in
frame at coordinates (i, j) and in video stream at time
t. Descriptors are computed using space and time
neighborhood around location (i, j, t), denoted as win-
dow W (i, j, t). An example of W (i, j, t) is shown in
Figure 1a. We propose to model the vector field of mo-
tion inside the window W (i, j, t) by a finite expansion
of orthogonal polynomials. Let us define the family of
polynomial functions with two real variables as follows:

PK,L(x1, x2) =

K∑
k=0

L∑
l=0

ak,l x
k
1 xl

2 (1)

where K ∈ N
+ and L ∈ N

+ are respectively
the maximum degree of the variables (x1, x2) and
{ak,l}k∈{0..K},l∈{0..L} ∈ R

(K+1)×(L+1) are the polyno-
mial coefficients. The global degree of the polynomial
is D = K + L.
Let B = {Pk,l}k∈{0..K},l∈{0..L} be an orthogonal ba-

sis of polynomials. A basis of degree D is composed by
n polynomials with n = (D + 1)(D + 2)/2 as follows:

B = {P0,0, P0,1, · · · , P0,L, P1,0, · · ·
· · · , P1,L−1, · · · , PK−1,0, PK−1,1, PK,0} (2)

We can create an orthogonal basis using the follow-
ing three terms recurrence:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P−1,l(x) = 0
Pk,−1(x) = 0
P0,0(x) = 1
Pk+1,l(x) = (x1 − λk+1,l)Pk,l(x)− μk+1,1Pk−1,l(x)
Pk,l+1(x) = (x2 − λk,l+1)Pk,l(x)− μk,l+1Pk,l−1(x)

(3)
where x = (x1, x2) and the coefficients λk,l and μk,l

are given by

λk+1,l =
〈x1Pk,l(x)|Pk,l(x)〉

‖Pk,l(x)‖2 λk,l+1 =
〈x2Pk,l(x)|Pk,l(x)〉

‖Pk,l(x)‖2
μk+1,l =

〈Pk,l(x)|Pk,l(x)〉
‖Pk−1,l(x)‖2 μk,l+1 =

〈Pk,l(x)|Pk,l(x)〉
‖Pk,l−1(x)‖2

(4)
and 〈· | ·〉 is the usual inner product for polynomial
functions:

〈P1 | P2〉 =
∫∫

Ω

P1(x)P2(x)w(x)dx (5)

with w the weighting function that determines the
polynomial family and Ω the spatial domain covered by
the window W (i, j, t). We use Legendre polynomials
(w(x) = 1, ∀x).

Using this basis, the approximation of the horizontal
motion component U is:

Ũ =
D∑

k=0

D−k∑
l=0

ũk,l
Pk,l(x)

‖Pk,l(x)‖ (6)

The polynomial coefficients ũk,l are given by the pro-
jection of component U onto normalized B elements:

ũk,l =
〈U | Pk,l(x)〉
‖Pk,l(x)‖ (7)

Similarly, vertical motion polynomial coefficients ṽk,l
are given by computing the projection of vertical com-
ponent V onto B elements. Using the polynomial basis
B of degrre D, the vector field asociated to window
W (i, j, t) is modelled by (D+1)× (D+2) coefficients.

3.2 Time modeling using a polynomial basis

Since an action is performed along more than two
frames, we propose to model motion information in
longer space-time volumes.

Let us consider the descriptor located in frame at
coordinates (i, j) and in video stream at time t0. We
consider the same spatial domain as previously de-
fined (see Figure 1a). Moreover, we now consider the
space-time tube defined by all the window W (i, j, t0)
to W (i, j, t0 + τ), with τ being the length of our de-
scriptors temporal domain (see Figure 1b). For each
frame at time t between t0 and t0 + τ , we propose to
model the vector field of motion inside the windows
W (i, j, t) of the tube by the coefficients ũk,l and ṽk,l ,
as defined in the previous section.

Then all coefficients ũk,l(i, j, t) (respectively
ṽk,l(i, j, t)) for t = t0 to t = t0 + τ are grouped in a
vector defined as

uk,l(i, j, t0) = [ũk,l(i, j, t0), . . . , ũk,l(i, j, t0 + τ)] (8)

We then model the time evolution of the coefficients
ũk,l(i, j, t) (resp. ṽk,l(i, j, t)) by projecting uk,l(i, j, t0)
(resp. vk,l) onto a one dimension orthogonal function
basis. Here, we use Legendre polynomial basis of de-
gree d defined by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P−1(t) = 0

P0(t) = 1

Tn(t) = (t− 〈tPn−1(t)|Pn−1(t)〉)Pn−1(t)− Pn−2(t)

Pn(t) =
Tn(t)

|Tn|
(9)
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Using this basis with degree d, the approximation of
uk,l(i, j, t) is:

ũk,l(i, j, t) =
d∑

n=0

ũk,l,n(i, j, t)
Pn(t)

‖Pn(t)‖ (10)

The model has d+1 coefficients ũk,l(i, j, t) given by

ũk,l,n(i, j, t) =
〈uk,l(i, j, t) | Pn(t)〉

‖Pn(t)‖ (11)

The time evolution of a given coefficient ũk,l(i, j) (re-
spectively ṽk,l(i, j)) is given by the vector ml,k(i, j, t0)
(respectively nl,k(i, j, t0)) as defined in equation (12)

ml,k(i, j, t0) = [ũk,l,0(i, j, t0), ũk,l,1(i, j, t0),

. . . , ũk,l,d(i, j, t0)]
(12)

The feature descriptor ν(i, j, t0) for the whole space-
time volume beginning at time t0 and centered at po-
sition (i,j) is given by

ν(i, j, t0) = [m0,0,m0,1, · · · ,m0,L,m1,0, · · · ,m1,L−1, · · ·
· · · ,mK−1,0,mK−1,1,mK,0,n0,0,n0,1, · · ·

· · · ,n0,L,n1,0, · · · ,n1,L−1, · · ·
nK−1,0,nK−1,1,nK,0]

(13)

Here,mk,l(i, j, t0) and nk,l(i, j, t0) are writtenmk,l and
nk,l to simplify.
The size of the descriptor ν(i, j, t0) is (D+1)× (D+

2)× d.

3.3 Trajectories

As proposed in [12], we use trajectories to follow the
spatial position of the window along time axis.

In our case the window W (i1, j1, t0+1) at time t0+1
is selected as the best matching block with respect to
the window W (i0, j0, t0) from time t0. This matching
is performed using a three step search block matching
method from [5]. The temporal evolution of spatial co-
efficients is thus modeled on tubes instead of volumes.

4 Experiments

We carry out experiments1 on two well known hu-
man action recognition datasets. The first one is the
KTH dataset [9], and the second one is the Hollywood2
Human Actions dataset [6]. The degree of the spatial
polynomial basis is set to 3 and the degree of time poly-
nomial basis is set to 5. The spatial size of space-time
volumes are set to 25× 25 pixels and the length is set
to 10. The spatial step for dense extraction is set to 5
pixels and the time step is set to 5 frames. We use a
Horn and Schunk optical flow algorithm [3] for motion
extraction with 25 iteration and the regularization λ
parameter is set to 0.1. We extract the motion fields
at 5 scales for KTH and 8 for Hollywood2, the scale
factor is set to 0.8.

For experiments, we use VLAT indexing method to
obtain signatures from SoPAF descriptors. We train a
linear SVM for classification.

Box-
ing

Hand-
Clap-
ping

Hand-
Wav-
ing

Jog-
ging

Run-
ning

Walk-
ing

Figure 2: Example of videos from KTH
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Car

GetOut-
Car

Kiss SitUp

Eat Hand-
Shake

Run StandUp

Figure 3: Example of videos from Hollywood2
dataset

4.1 KTH dataset

The KTH dataset [9] contains six types of human ac-
tions: walking, jogging, running, boxing, hand waving
and hand clapping (Figure 2). These actions are done
by 25 different subjects in four scenarios: outdoors,
outdoors with scale variation, outdoors with different
clothes, inside. For experiments, we use the same ex-
perimental setup as in [9, 12], where the videos are
divided into a training set (8 persons), a validation set
(8 persons) and a test set (9 persons).

For experiments on KTH dataset, the best hyper-
parameters are selected through cross-validation using
the official training and validation sets. The results
were obtained on the test set.

4.2 Hollywood dataset

The Hollywood2 [6] dataset consists of a collection
of video clips and extracts from 69 films in 12 classes
of human actions (Figure 3). It accounts for approxi-
mately 20 hours of video and contains about 150 video
samples per actions. It contains a variety of spatial

1Software can be downloaded at http://http://www.vlat.fr
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scales, zoom camera, deleted scenes and compression
artifact which allows a more realistic assessment of hu-
man actions classification methods. We use the official
train and test splits for the evaluation.

4.3 Experimental results

In this section we show results on the two datasets.
For each, we show results with our SoPAF descriptor
alone and with a SoPAF and HOG descriptors com-
bination. Let us note that our approach uses linear
classifiers, and thus leads to better efficiency both for
training classifiers and classifying video shots, on the
contrary to methods [12] and [2].
On Table 1 we show the results obtained on KTH

dataset, and compare them to recent results from the
literature. We obtain good results only using the pro-
posed SoPAF descriptors. When using SoPAF and
HOG combination we obtain 94.1% multiclass accu-
racy, which is near state of the art performances while
still using a linear classifier and combining less descrip-
tors.

Table 1: Classification accuracy on the KTH
dataset ; ND means the number of descriptors
used ; NL stands for non-linear classifiers ; �

In [2], the same feature is iteratively combined
with itself 3 times

Method ND NL Results
Wang [12] 4 X 94.2%
Gilbert [2] � 3� X 94.5%
HOG 1 91.5%
SoPAF 1 93.4%
SoPAF+HOG 2 94.1%

On Table 2 we show results obtained on Hollywood2
dataset. With our SoPAF descriptor, we obtain results
slightly better than the related HOF descriptors of [12]
(and [2]) while using a linear classifier.
When combining SoPAF and HOG, we obtain a

mAP of 55.6%, only second to the method proposed
by [12]. However, contrarily to [12], we use only two
descriptors and a linear classifier. When compared to
the method proposed by Ullah et al., we obtain about
the same results. However, we use only 2 signatures
in contrast to over 100 BoW signatures accumulated
over different regions in [11]. These regions where fur-
thermore obtain from several detectors (e.g. Person,
Action, Motion) trained on external data sets.

5 Conclusion

In this paper, we introduced a novel family of local
motion descriptors using polynomial approximations of
the optical flow and time evolution modeling.
For a given spatial window, after projecting the com-

ponents of the optical flow on an orthogonal bivariate
polynomial basis, we model the temporal evolution of
spatial coefficients with one dimension polynomial ba-
sis. In order to model homogenous motion patterns,
our space-time volumes follows trajectories of associ-
ated image patches.
We carry out experiments on the well known KTH

and Hollywood2 datasets, using recent signatures

Table 2: Mean Average Precision on the Holly-
wood2 dataset ; ND : number of descriptors ;
NL : non-linear classifiers ; � In [11] HOG/HOF
descriptors are accumulated on over 100 spatio-
temporal regions each one leading to a different
BoW signature

Method ND NL Results
Gilbert [2] � 3 X 50.9%
Ullah [11] HOG+HOF 2 X 51.8%
Ullah [11] 2(≥ 100�) X 55.3%
Wang [12] traj 1 X 47.7%
Wang [12] HOG 1 X 41.5%
Wang [12] HOF 1 X 50.8%
Wang [12] MBH 1 X 54.2%
Wang [12] all 4 X 58.3%
HOG 1 48.4%
SoPAF 1 52.2%
SoPAF+HOG 2 55.6%

method from image classification techniques. We ob-
tain improved results over popular descriptors such as
HOG and HOF, which highlight the soundness of the
approach.

Further improvement would be to use this frame-
work to model gradient field of images or optical flow
as in HOG and MBH.
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