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Abstract

Simultaneous localization and mapping (SLAM) of
working environments is one of the important problems
in mobile robotics. For the problem, we present a new
method using an omnidirectional stereo system. By us-
ing 3D range information obtained from the omnidi-
rectional stereo, we construct scan-matching based ex-
tended Kalman filter SLAM(EKF-SLAM) system. In
the system, the output of the piecewise iterative clos-
est point(ICP) algorithm is used as the observation
of the EKF. The global consistency of the robot tra-
jectory is kept by a loop closing method based on the
Kalman smoothing. Experimental results of the method
are shown for a simulated environment.

1 Introduction

3D simultaneous localization and mapping(SLAM)
is one of the important problems in the area of mobile
robotics (e.g.[1]). To estimate robot pose and its work-
ing environment, the robot should obtain 3D informa-
tion of the environment. Laser range finder (LRF) is
one of commonly used sensors that obtains the 3D in-
formation. The LRF can measure depth information
of a target point accurately by laser beam projection,
however additional scanning mechanism is required to
reconstruct 3D surface structure[2]. Lider is also hope-
ful solution, however, its maximum vertical resolution
is currently 32.
The other possible approach is a vision based one

which uses conventional cameras to form stereo view.
By this approach, 3D surface structure can be obtained
together with its texture. However, conventional cam-
era has still limited view area to cover whole sur-
rounding environment in which the robot should nav-
igate and work. To overcome this drawback of vision
based approach, we employ an omnidirectional stereo
vision system which consists of hyperboloidal mirror
and CCD camera.
In our method, accuracy of each stereo 3D-

information is improved by sub-pixel estimation of
disparity. After this pre-process, these 3D data

are aligned by the Iterative Closest Point (ICP)
algorithm[3] at each step. Then, the estimation is im-
proved by re-calculating the error of the observations
by Kalman smoothing when the robot detects loop clo-
sure of its trajectory.

The main contributions of this paper are as follows:

1. Extended Kalman filter SLAM(EKF-SLAM) for-
mulation for a system which uses an output of
the scan-matching as an EKF observation is pro-
posed. Similar method was proposed by Cole and
Newman[2], however, their method is complete
SLAM; which keeps history of all previous robot
pose. This causes too much updating poses which
do not relate to the current observation; this re-
quires meaning-less computation. On the other
hand, our method is formulated as partial SLAM;
which keeps only the current robot pose.

2. SLAM system with an omnidirectional stereo vi-
sion with a sub-pixel level disparity estimation,
that is effective in both estimating 3D positions
and reconstructing environments accurately, is
constructed; to the best of our knowledge, there
are no range based localization method that uses
an omnidirectional stereo with sub-pixel level dis-
parity estimation.

The most significant advantage of an omnidirec-
tional camera is its wide field of view. Therefore, al-
most any part of view is shared with a different view
points; this leads to stable localization using ICP. Fur-
thermore, the required number of observations to re-
construct whole environment decreases.

The rest of this paper is structured as follows: In
Section 2, we present related work. In Section 3, we
describe scan-based EKF-SLAM formulation. In Sec-
tion 4, we describe implementation of our EKF-SLAM
using omnidirectional stereo. Experimental results are
shown in Section 5. Finally, we conclude and present
plans for future work in Section 6.
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2 Related work

Our work is positioned as a part of SLAM. Many
studies have been carried out in this domain. Most
of the researches use Bayesian filter to formulate the
problem. To implement the filter, some of these use
particle filter, and the others use extended Kalman fil-
ter(EKF).
Extended Kalman filter is widely used[4, 5]. Many

method is based on feature tracking. Such methods
uses only a salient point of an observation. This may
reduce computation, however, most of the observation
is wasted. For dense 3D reconstruction of environ-
ments, it is required to use many data. Threfore, scan-
matching is suitable for dense 3D reconstruction.
Scan-matching methods can divided into two cate-

gories: one is matching with current range observation
with generated map, and the other is matching with
the current and a previous range observation.
The advantage of former is comparing with rich in-

formation. Thus it is sutable for poor resolution range
sensor (e.g.sonar). However, the quality of the global
map affects the localization results, i.e.the previous lo-
calization errors degrade the accuracy of consequent
localization. Nevertheless, correcting previous localize
error in the map is difficult. One of the solution of this
problem is FastSLAM[6]. The method keeps various
map hypothesis in particles and paticle filter selects
most likely maps. However, the number of particle
increases exponentially as the dimension of the state
increases.
The latter requires a sensor which has wide feild of

view with enough resolution. So the number of meth-
ods in this category is not many.
Cole and Newman[2] propose scan-matching based

EKF-SLAM. Checchin et al. [7] apply the method to
the rader-based system with improving matching pro-
cess. Their method is formulated as complete SLAM;
which keeps history of all previous robot pose. This
causes too much updating poses which do not relate to
the current observation.
Borrmann et al. [8] propose another approach; which

is based on Graph-SLAM[9]. Their method optimize
the robot trajectory by using piecewise ICP results and
loop information. The optimization process is based
on relaxation; which requires much computation. We
think the method based on a back-propagation such as
Kalman smoothing is enough to optimize.

3 Scan-matching based EKF-SLAM

In this section, we describe the framework of
the scan-based extended Kalman filter SLAM(EKF-
SLAM). Note that our EKF formulation is not depend
on the sensor model, so it can apply to the system
using other sensor such as lider.
The state vector includes only the current robot po-

sition and orientation, i.e.not including history of the
previous robot poses or map elements. By using the
current robot’s position (xt, yt, zt)T and rotation quater-
nion qt, the state vector at time t is denoted as follows:

xt = (xt, yt, zt, qT
t )T ,

where T denotes transpose. The state transition equa-
tion is defined as follows by a function F to update

state vector by odometer inputs:

xt+1 = F(xt,ut+1) + vt+1, (1)

where u represents the inputs from odometer, v repre-
sents white noise vector, respectively. We use a robot
driven by the wheel, so we model F as moving a planer
surface, then the system noise vector compensates oth-
ers; such as entering slope.

In our EKF formulation, the uncertainty of the state
Pt+1 is calculated by

Pt+1 = ΔxFPtΔxFT + ΔuFΣut+1ΔuFT + Qt+1, (2)

where ΔxF and ΔuF represent Jacobian of F differenti-
ated with respect to x and u, Σut+1 represents the error
covariance of the ut+1, Q represents the covariance of
v, respectively.

A scan-matching method gives us a relative displace-
ment and rotation between the current and a previ-
ous robot pose. Therefore, the observation equation is
formed as follows:

zt,t−k = H(xt, xt−k) + wt,t−k, (3)

where zt,t−k represents the relative displacement and
rotation between xt and xt−k, and wt,t−k is an error of
the result of the ICP, respectively. We assume that
the covariance of the w, denoted as R, is constant with
respect to any pair of x. H is the function to calculate
relative pose of xt with respect to xt−k. It includes
rotation, so it is a non-lenear function. Note that Eq.
(3) can use ICP matching between current and any
previous range data.

Both xt and xt−k have some uncertainty, we modify
the Kalman filter formulation to deal with the uncer-
tainties. We assume that each error covariance of x is
independent, the innovation covariance S is calculated
as follows:

St,t−k = Δxt HPtΔxt H
T + Δxt−k HPt−kΔxt−k HT

+Rt,t−k. (4)

By using this innovation covariance, the Kalman gain
Kt,t−k is calculated as same as the linear Kalman filter.
Updating state is also same. The error covariance of
the state is done by using following:

P̃t = (I − Kt,t−kΔxt H)P̂t − Kt,t−kΔxt−k HPt−k, (5)

where I represents the identity matrix.
Usually, we use k = 1, so the error of the above

successive ICP estimation is accumulated along with
robot’s navigation. To reduce this accumulated er-
ror, we apply a closing loop method based on Kalman
smoothing[10]. When a loop is detected by the method
described in Section 4.3, the k is set to the size of the
loop, then the newest pose is updated. The result is
propagated by using Kalman smoothing.

4 Implementation using omnidirectional
stereo

4.1 Omnidirectional stereo

Our omnidirectional stereo is composed out of two
omnidirectional cameras. The omnidirectional camera
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Figure 1. Omnidirectional stereo camera(left),
and its image(right).

(a)

(b)

Figure 2. Panoramic image pair converted from
omnidirectional image shown in the Fig. 1. (a):
Upper image, (b): Lower image.

that we used is based on a hyperboloidal mirror[11], as
shown in the Fig.1(left). It can acquire omnidirectional
images as shown in the Fig.1(right).
To apply omnidirectional stereo, we align two om-

nidirectional cameras vertically same as Gluckman et
al. [12] By converting input omnidirectional images
to panoramic images, we obtain image pairs that have
parallel and vertically aligned epipolar lines. An exam-
ple of the panoramic image pair is shown in the Fig.
2.
To calculate disparities, we apply a SAD (Sum of

Absolute Difference) based block-matching method to
search corresponding points between a stereo image
pair. Then, we estimate sub-pixel level disparities by
using a corresponding evaluation function as proposed
by Arai et al.[13].

4.2 Scan-matching using ICP

We use Iterative Closest Point (ICP)[3] algorithm in
order to align range data between two successive ob-
servations. We emphasize that such piecewise ICP is
advantageous for computational cost, however, preci-
sion is not guaranteed, and the drawback can be elimi-
nated by the closing loop method explained in the next
section.
The ICP aligns two sets of range data, which are

observed at different positions, by estimating their po-
sitional relation. The method repeats following steps
unless mean-square error falls less than a threshold: i)
search for correspondence between points in the two
range data sets. ii) calculate the translation and rota-
tion which minimize sum of distances between corre-
sponding points.
To avoid converging local minima, the initial value of

the ego-motion should be chosen carefully. We use an
odometry information of the robot as the initial value.

Figure 3. A corridor environment for simula-
tion(top view).

The uncertainty of the ICP result is currently given
as a constant value determined experimentally.

4.3 Loop-closure detection

The error of the successive ego-motion estimation is
accumulated. To fix this accumulated error, we apply
a closing loop method based on Kalman smoothing[10].

To detect a loop-closure, we use the residual of the
ICP. When a previous position is inside the 99% prob-
ability ellipsoid of the current position, this pair of the
position may be loop-closure. Then, we calculate rela-
tive motion between the pair by the ICP. If the residual
of the ICP is less than a threshold, the loop is detected.

5 Experiments

To evaluate our method, we conducted a simula-
tion experiment. We simulated an indoor environ-
ment, which consists of planer objects such as walls,
boxes; each object has a texture made from a photo-
graph. The simulated environment is shown in Fig. 3.
The robot moved the environment with taking pairs of
panoramic stereo image and odometer values.

The robot started from the bottom-left corner of the
Fig. 3 to top-left corner straightly, then turned 30◦
right 3 times for the sake of going to the next corner,
finally went back to the bottom-left corner through the
top-left corner and the top-right corner. While moving,
the robot obtained stereo image pairs and odometer
values with every 1m moving and 30◦ turning. The
robot moved totally 64m and obtained 74 observations.

Fig. 4 shows the estimated trajectory before apply-
ing the closing loop. In the figure, purple and green
lines indicate true and estimated trajectories, respec-
tively. Black circles indicate the estimated position
where robot observed. Red ellipsoids indicate 99%
probability ellipsoid of the robot position. The posi-
tional error of the final position were about 1.1m on x-y
plane and 0.24m along z axis. The root mean square
error was 0.51m.

At the final positon, since the initial position was
inside the 99% probability ellipsoid, the robot ran ICP
matching with range data obtained at initial and final
position. Then the residual was less than threshold,
the robot detected a loop and processed the Kalman
smoothing.
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Figure 4. Estimated trajectory of the robot be-
fore applying the closing loop. Purple and green
lines indicate true and estimated trajectories, re-
spectively. Black circles indicate the estimated
position where robot observed. Red ellipsoids in-
dicate 99% probability ellipsoid of the robot po-
sition.
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Figure 5. Estimated trajectory of the robot after
applying the closing loop. Two trajectories (pur-
ple and green lines) are the same as Fig. 4. Blue
line indicates the estimated trajectory after ap-
plying the closing loop. The estimated positions
(black circle) and their 99% probability ellipsoids
(red ellipsoid) are on the trajectory after apply-
ing the closing loop.

Fig. 5 shows the estimated trajectory after applying
the closing loop. In the figure, the estimated trajec-
tory after applying the closing loop (blue line) and the
same trajectory as Fig. 4 are drawn. Also the esti-
mated position (black circle) and its 99% probability
ellipsoid (red ellipsoid) after the closing loop are drawn.
Accumulating error significantly decreased by the clos-
ing loop. The root mean square error was reduced to
0.14m.

The reconstruction results before closing the loop
and after closing the loop are shown in the figures 6 and
7, respectively. Before closing the loop, a misalignment
is seen on the bottom-left corner. But after closing the
loop, the corner is correctly lapped over.

Figure 6. Reconstruction result before closing
loop.

Figure 7. Reconstruction result after closing loop.

6 Conclusion

We propose a new 3D simultaneous localization and
mapping method that uses scan-matching of range
data obtained by the omnidirectional stereo with a
sub-pixel level disparity. We apply novel formulation of
EKF-SLAM and Kalman smoothing-based simple clos-
ing loop. The simulation experiment suggests that our
extended Kalman filter formulation works effectively.

One of our future work is to develop a method to
handle the uncertainty of the ego-motion calculated
by the ICP, which is treated as a constant value in this
paper.
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