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Abstract

The present report describes a novel method of re-
constructing three-dimensional (3-D) scenes that in-
clude block-like objects observed in monocular images.
The objects are represented by 3-D rigid models with
geometrical parameters. The fidelity of these object
models to the images and the consistency of relations
between the object models are formulated using the
Markov Random Field (MRF) model that consists of the
object models. The optimal configuration of this object-
based MRF model is obtained by the primal-dual inte-
rior point method. The recognition schemes are applied
to actual scenes.

1. Introduction

Reconstruction of three-dimensional (3-D) block

worlds from monocular images has been one of the

most interesting research topics in the computer vision

community. It would provide a wide range of applica-

tions such as industrial processes, video monitoring and

intelligent robots. As such, extensive research has been

dedicated to block world reconstruction from monocu-

lar images.

Ulrich et al. proposed a view-based approach of

recognizing 3-D objects using CAD models[6]. The

views of the CAD models are hierarchically arranged

in a tree structure, and thus the computation time can

be reduced. This method can be applied to the prob-

lems where the views can be trained beforehand. Chen

et al. proposed a template-based algorithm for recogni-

tion of box-like objects in color images[1]. Box compo-

nent segments are extracted from color images, and then

the templates that match the segments best are sought

based on the modified chamfer distances. The algo-

rithm does not consider the relations between the ob-

jects. Gupta et al. presented a physical representation

of outdoor scenes using convex block models[3]. The

optimal configurations of the block models are quali-

tatively searched based on several physical properties,

one of which is the stability of the layout of the block

models in a scene. The stability is evaluated from the

object densities that are estimated from an input color

image by their previous method. However, the density

estimation itself is not an easy problem to be solved.

The present report describes a reconstruction method

of 3-D scenes that are composed of block-like objects

observed in monocular images. The objects are repre-

sented by 3-D rigid models with several geometrical pa-

rameters. These object models are fitted to edges in the

monocular images by evaluating (i) the fidelity of the

object models to the edges and (ii) the consistency of re-

lations between the object models. In order to evaluate

them simultaneously, we introduce a Markov Random

Field (MRF)[2, 7] model that is composed of the object

models, which is called an object field model. We used

the object field model for the medical image analysis[5]

and the stereovision data analysis[4]. The optimal con-

figuration of the object field model is obtained by the

primal-dual interior point method based on the quasi-

Newton method. We demonstrate the effectiveness of

the proposed reconstruction method.

2. Object Field Model

We consider a situation where 3-D block-like ob-

jects are directly placed on a ground plane and where

there are at least two observable segments crossing at

the right angle on the ground plane. Based on the

two segments, a virtual rectangular region is set on the
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ground plane, and then it is divided into S (= Sx × Sy)

lattice rectangles. The original and divided rectangles

are called a Region Of Interest (ROI) and cells, re-

spectively. The s-th cell is denoted by qs (s ∈ S =
{1, 2, · · · , S}). We assume that each cell includes at

most one object or does not include any objects.

2.1. Object Models

In this report, boxes, cylinders and spheres are repre-

sented by rectangular solid, cylinder and sphere models,

respectively. The rectangular solid model, for example,

is represented by a control point (x(SR), y(SR)), a rota-

tion angle along the perpendicular axis θ(SR) and 3-D

sizes (h(SR), w(SR), d(SR)). In this report, the object

sizes are assumed to be known. The situation where a

cell does not include any objects is represented by an

empty model.

In qs, the m-th object model is denoted by om
s (m ∈

Ms = {1, 2, · · · , M}). Especially, the empty model

is denoted by o1
s. The relative priori probabilities of

the empty, rectangular solid, cylinder and sphere mod-

els are represented by

P̄
(
o(E)

)
= PE , (1)

P̄
(
o(SR)

)
= PSR , (2)

P̄
(
o(SC)

)
= PSC , (3)

P̄
(
o(SS)

)
= PSS , (4)

where PE , PSR , PSC and PSS are constant values.

2.2. Belief of Object Models

We introduce another type of parameter, belief,
which represents the degree of confidence that an ob-

ject model appears in a cell. Let xm
s denote the belief of

om
s in qs. xm

s satisfies the following simplex constrains:

0 ≤ xm
s ≤ 1, (5)∑

m∈Ms

xm
s = 1. (6)

In Eq.(5), 1 and 0 represent the complete appearance

and disappearance of om
s in qs, respectively. Eq.(6) rep-

resents the exclusive appearance of object models in one

cell.

3. Generation of Object Models Based on
Fidelity to Edges

In each cell qs, a list of the promising object models,

Ls = {o1
s, o

2
s, · · · , oM

s }, is made based on the fidelity

of the object models to edges in an edge image obtained

by applying the Laplacian Gaussian filter to an input

monocular image. Let e ∈ E denote an edge in the edge

image.

The first step is to generate initial object models at

several different positions in qs, and then add them into

a tentative list L̃s. Each object model õ in L̃s is pro-

jected onto the image plane. A pixel on the line seg-

ment of the projected model is called a projected point,
which is denoted by g ∈ G(õ). Let eg ∈ Eg denote an

edge near to g.

The posteriori probability of õ is calculated by

P (õ|E) = |G(õ)|

√ ∏
g∈G(õ)

γ(e∗g, g) , (7)

e∗g = arg max
eg∈Eg

γ(eg, g), (8)

γ(eg, g) = Sig(d(eg, g); ad, bd) · Sig(θ(eg, g); aθ, bθ),
(9)

where Sig(x; a, b) is the sigmoid function with the pa-

rameters a and b
(

i.e., Sig(x; a, b) = 1
1+exp(a(x−b))

)
,

d(e, g) is the distance between e and g, and θ(e, g) is

the difference in the edge direction between e and g.

γ(e, g) represents the fidelity of the projected point g to

the edge e.

Among the object models (which are never selected)

in L̃s, the optimal object model is selected based on

the posteriori probability. By slightly changing the pa-

rameters of the selected model, new object models are

generated and added to L̃s. The posteriori probabilities

of the newly generated models are calculated.

The above selection and generation procedures are

iterated until a certain number of models are generated.

The M − 1 optimal models in L̃s are moved to Ls, and,

finally, the empty model is added to Ls.

4. Formulation of State of Object Model
Configuration Based on MRF

Given a set of edges E in the edge image, the poste-

riori energy function is defined by

U(x|E) = L(E|x) + V (x), (10)

where

x =
(
x1

1, x
2
1, · · · , xM

1 , x1
2, · · · , xM

2 , · · · , x1
S , · · · , xM

S

)T

(11)

is the configuration of the object field model. L(E|x) is

the likelihood that evaluates how the current configura-

tion fits the edges in the edge image, and V (x) is the po-

tential energy that evaluates the consistency of cliques
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of the object models. The most likely state of the ob-

ject model configuration is obtained by minimizing the

posteriori energy function.

The likelihood L(E|x) and the potential energy

V (x) are explained below.

4.1. Likelihood of Object Models to Edges

All the object models (except the empty models) in

the lists L1,L2, · · · are projected onto the image plane

as shown in Figure 1. Let g ∈ G be the projected point

which comes from the mg-th object model in the sg-th

cell (i.e., o
mg
sg ). Further, let o

m̌g

šg
(šg ∈ Šg and m̌g ∈

M̌šg ) denote an object model that intersects with the

sight segment from the camera to the origin of g.

Figure 1. The relation between the object
models.

The likelihood is defined by

L(E|x) =
1
|G|

∑
g∈G

w(g) · L(E|x, g), (12)

w(g) =
∏

šg∈Šg

⎛
⎝1−

∑
m̌g∈M̌šg

P (om̌g

šg
)

⎞
⎠ , (13)

L(E|x, g) =
(
1− γ(e∗g, g)

)
xmg

sg

+
∑

m′
g∈Msg\mg

γ(e∗g, g) x
m′

g
sg

+K1

∑
šg∈Šg

∑
m̌g∈M̌šg

γ(e∗g, g) x
m̌g

šg

+K2

∑
šg∈Šg

∑
m̌′

g∈Mšg\M̌šg

(
1− γ(e∗g, g)

)
x

m̌′
g

šg
, (14)

where A\B represents a difference set (i.e., A\B =
{x|x ∈ A; x /∈ B}). K1 and K2 are coefficients.

The weight w(g) in Eq.(13) lowers the sensitivity of

the evaluation term L(E|x, g) if g is occluded by the

objects
{
o

m̌g

šg

}
. P (om

s ) is the priori probability that is

defined by

P (om
s ) =

P̄ (om
s )∑

m∈Ms

P̄ (om
s )

, (15)

where P̄ (o) represents the relative priori probability of

the object model o defined in Section 2.1.

The first term in Eq.(14) has the function of raising

the belief of the object model o
mg
sg if the fidelity γ(e∗g, g)

is high (it implies that the object model o
mg
sg will likely

occur in the cell qsg ), and vice versa. The second term,

on the other hand, lowers the belief of the object models

except o
mg
sg if the fidelity is high, and vice versa.

The third term lowers the belief of the object models

that intersect with the sight segment (i.e., these object

models occlude o
mg
sg ) if the fidelity is high, and vice

versa. The fourth term raises the belief of the other

models if the fidelity is high, and vice versa.

4.2. Potential Energy for Cliques of Object
Models

There are two kinds of the potentials: 1-clique po-

tential V 1
s and 2-clique potential V 2

s,t.

The 1-clique consists of one cell qs and its potential

is defined by

V 1
s = −

∑
m∈Ms

xm
s log P (om

s ). (16)

The 2-clique consists of two adjacent cells: qs and

qt∈N (s), where N (s) represents a set of site indexes of

the cells adjacent to qs. The 2-cliques are classified into

three categories, C1, C2 and C3, based on their compo-

nents as listed in Table 1.

Table 1. Three categories of the 2-cliques.

Empty

model

Substan.

models

Empty model: o(E) C1 C2

Substantial models:

o(SR),o(SC) and o(SS) C2 C3

The potentials of these cliques are defined by the fol-
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lowing non-negative function:

h
(
o(E)

s , o
(E)
t

)
= h(E,E), (17)

h
(
o(E)

s , o
(S)
t

)
= h(E,S), (18)

h
(
o(S)

s , o
(S)
t

)
= − log

⎧⎨
⎩1−

V ol
(
o
(S)
s ∩ o

(S)
t

)
V ol

(
o
(S)
s ∪ o

(S)
t

)
⎫⎬
⎭ ,

(19)

where h(E,E) ≥ 0 and h(E,S) ≥ 0 are constant values.

The operator V ol(·) represents the volume of objects.

The potential function h(os, ot) gets smaller as the ob-

ject pair (os, ot) is more consistent.

The 2-clique potential V 2
s,t is defined by

V 2
s,t =

∑
m∈Ms

∑
n∈Mt

xm
s xn

t h(om
s , on

t ), (20)

and the potential V (x) at the configuration x is defined

by

V (x) = w1
1
S

∑
s∈S

V 1
s + w2

1
T

∑
s∈S

∑
t∈N (s)

s<t

V 2
s,t , (21)

where T is the number of the 2-cliques.

5. Minimization of Posteriori Energy

The minimization problem of the posteriori energy

function of Eq.(10) under the simplex constrains of Eqs.

(5) and (6) is converted into that of the following l2 bar-

rier penalty function:

F (x; μ) = U(x|E)− μ
∑
s∈S

∑
m∈Ms

log xm
s

+
1
2μ

∑
s∈S

( ∑
m∈Ms

xm
s − 1

)2

, (22)

from which the approximated shifted barrier KKT point

is obtained by the primal-dual interior point method

based on the quasi-Newton method. The obtained point

represents the optimal configuration of the object field

model.

6. Experimental Results

6.1. Scene 1

Figure 2(a) shows the image of an artificial block

scene that includes four boxes, two cylinders and a

sphere on the floor. Figure 2(b) shows the edge image

with the projections of the optimal 3-D object models.

Figure 2(c) and (d) show the rendering results of the ob-

ject models. 5× 5 cells are used which are displayed as

yellow lines in the Figure 2(c) and (d).

In Figure 2(c) and (d), the positions and directions of

the blocks are reconstructed almost correctly although

several blocks are partially occluded by the others. Fur-

thermore, the regions which do not include any objects

in Figure 2(a) can be correctly represented by the empty

models that appear as the empty cells in Figure 2(c) and

(d).

It took twenty seconds to make each list of the

promising object models, and twenty minutes to obtain

the optimal configuration of the object field model.

6.2. Scene 2

Figure 3(a) shows the image of another scene that in-

cludes three vending machines. Figure 3(b) shows the

edge image with the projections of the optimal rectan-

gular solid models. Figure 3(c) and (d) show the ren-

dering results of the object models. 3×3 cells are used.

The estimation of the direction of the solid model for

the left-most vending machine has an error of approx-

imately 30 degrees, which is caused by the facts that

only the front surface of the vending machine can be

seen from the camera and that it is partially occluded

by the wall.

It took forty seconds to make each list of the promis-

ing object models, and sixty seconds to obtain the opti-

mal configuration of the object field model.

7. Conclusion

The present report describes a method of recon-

structing 3-D block worlds by use of the object-based

MRF model. Its optimal configuration is obtained

by the primal-dual interior point method based on the

quasi-Newton method. The experimental results indi-

cate that the proposed method is promising as means of

reconstructing 3-D scenes.

Our future works include the reconstruction of more

complex scenes.
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(a) Scene 1.
(b) Edges (black) and the pro-

jections of the optimal 3-D

object models (red).

(c) The rendering result

(front view).

(d) The rendering result (top

view).

Figure 2. Scene 1 and its reconstruction
results.

(a) Scene 2.
(b) Edges (black) and the pro-
jections of the optimal 3-D

object models (red).

(c) The rendering result
(front view).

(d) The rendering result (top
view).

Figure 3. Scene 2 and its reconstruction
results.
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