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Abstract

The small vibration of the eye ball, which occurs
when we fix our gaze on an object, is called “fixa-
tional eye movement,” and using the analogy of it for
the camera motion, differential-formed and integral-
formed shape recovery method was proposed. We are
considering a practical system using both methods se-
lectively and adaptively for the local texture pattern in
images. In this study, we analyze the performance es-
pecially of the differential-formed method with respect
to the relation between a striped-texture and a camera
rotation direction. From the results, we argue that, at
least for the differential-formed method, suitable one-
directional camera rotations have to be applied adap-
tively according to the local direction of image texture.

1 Introduction

It is well known that fixational eye movements,
which means an irregular involuntary motion of eye-
ball, arises when human gazes fixed target [1], and an
actual vision system based on fixational eye movements
has been proposed as the Dymanuc Retina [2] and the
Resonant Retina [3]. Fixational eye movements can
be interpret as an instance of stochastic resonance [4].
Shape from motion methods using random camera ro-
tations imitating fixational eye movements of a human
visual system have been proposed as both of a differ-
ential scheme [5] using the gradient equation related to
the optical flow and an integral scheme [6] using the
motion blur in images. The differential-formed method
is effective for small camera rotations, i.e. small image
motions relative to the fineness of an image texture,
and for the opposite case, the integral-formed method
is suitable. In [6], an analog motion blur, i.e. the mo-
tion blur caused by the random camera rotations dur-
ing exposure is supposed, but when both schemes are
applied complementarily, the motion blur image has to
be artificially generated by averaging many still images
instead of analogously blurring. Therefore, for on-line
shape recovery, it is desirable that the more accurate
shape can be recovered using the small number of still
images for both of differential and integral methods.

Both of those methods use the random camera rota-
tions around X− and Y−directions, which cause two-
dimensional (2-D) motion field in image sequence. This
2-D motion field are effective for the image texture
having various directions uniformly, but usually there
is a biased distribution of a texture direction in im-
ages. On the other hand, when the object surface has a
one-directional texture, for example the stripe pattern,
there may be a possibility that 1-D movements are
suitable for accurate depth recovery. In addition, 1-D

movements spanning to the image sequence is desirable
also for computation costs. The integral method in [6]
needs convolution processing to detect the point spread
function of motion blur. One-directional rotation caus-
ing 1-D image movements which direction depends on
an image position and the depth corresponding to this
position is especially desirable in the viewpoint of com-
putation cost, since the point spread function becomes
1-D function. Therefore, we can adopt the camera’s
one-directional rotation and control the rotation direc-
tion adaptively according to the texture characteristics
of region of interesting in the practical system.

From the above consideration, in this study, we ex-
amine the performance of one-directional camera rota-
tions especially for the differential method in [5]. By
evaluating the depth recovery error caused by apply-
ing the differential method with one-directional camera
rotations to the images having stripe pattern, we ex-
plore the possibility of the practical system in which
the suitable one-directional camera rotations instead of
two-directional one are applied adaptively according to
the local direction of the texture.

2 Outline of Differential Method using Ran-
dom Small Camera Rotations

2.1 Camera Rotation and Gradient Equation

We use perspective projection as our camera-
imaging model. The camera is fixed with an (X, Y, Z)
coordinate system, where the viewpoint, i.e., a lens
center, is at origin O and the optical axis is along the
Z-axis. By taking a focal length as a unit of geomet-
rical representation, a projection plane, i.e. an image
plane, Z = 1 can be used without any loss of generality.
A space point (X, Y, Z) on the object is projected to
the image point (x, y). In general shape from motion
methods, the camera is supposed to move with trans-
lational and rotational vectors relative to the object.

The motion model used in [5] and [6] represents
tremor which is the smallest component of fixational
eye movements. We can set a camera’s rotation center
at the back of the lens center with Z0 along the opti-
cal axis. The rotation around Z−axis cannot generate
new information of a 3-D scene, hence we consider the
rotational velocity �r = [rx, ry, 0]�, which can be used
also for the representation of the rotational vector at
origin O. On the other hand, the translational vector
�u is caused by the above rotation, and is formulated as
follows:

�u = �r ×
[ 0

0
Z0

]
= Z0

[
ry

−rx

0

]
. (1)

MVA2013 IAPR International Conference on Machine Vision Applications, May 20-23, 2013, Kyoto, JAPAN9-18

264



Figure 1. Coordinate system and camera motion
model.

Using this representation of �u and the inverse depth
d(x, y) = 1/Z(x, y), the optical flow �v = [vx, vy]� is
given as follows:

vx = xyrx − (1 + x2)ry − Z0ryd ≡ vr
x − ryZ0d, (2)

vy = (1 + y2)rx − xyry + Z0rxd ≡ vr
y + rxZ0d. (3)

In the above equtions, d is an unknown variable at each
pixel, and �u and �r are unknown common parameters
for the whole image.

The gradient equation is the first approximation of
the assumption that image brightness is invariable be-
fore and after the relative 3-D motion between a cam-
era and an object. At each pixel (x, y), the gradient
equation is formulated with the partial differentials fx,
fy and ft of the image brightness f(x, y, t), where t de-
notes time, and the optical flow as follows:

ft = −fxvx − fyvy. (4)

By substituting Eqs. 2 and 3 into Eq. 4, the gradient
equation representing a rigid motion constraint can be
derived explicitly as follows:

ft = −(fxvr
x + fyvr

y)− (−fxry + fyrx)Z0d

≡ −fr − fud. (5)

In Eq. 5, fx, fy and ft are observations and contain
observation noise. Additionally, equation error, i.e. er-
ror caused by the first approximation in Eq. 4 generally
exists. The coordinate system and the camera motion
model is shown in Fig. 1.

2.2 Probabilistic Model Definition

We use M as the number of pairs of two successive
frames and N as the number of pixels. In our study,
{f (i,j)

t }i=1,···,N ;j=1,···,M and {�r(j)}j=1,···,M are treated
as stochastic variables, and {d(i)}i=1,···,N correspond-
ing to the inverse depth at each pixel is treated as a
definite unknown variable.

It is supposed that optical flow is very small, and
hence, observation errors of ft, fx and fy, which are
calculated by finite difference, are small. Additionally,
equation error is also small, and therefore we can as-
sume that error having no relation with ft, fx and fy is
added to the whole gradient equation. From this con-
sideration, we assume that f

(i,j)
t is a Gaussian random

variable with mean 0 and variance σ2
o , and f

(i,j)
x and

f
(i,j)
y have no error.

p(f (i,j)
t |d(i), �r(j), σ2

o) =
1√

2πσo

× exp

⎧⎪⎨
⎪⎩−

(
f

(i,j)
t + fr(i,j) + fu(i,j)d(i)

)2

2σ2
o

⎫⎪⎬
⎪⎭ . (6)

On the other hand, we also assume that rx and ry are
independent Gaussian random variables respectively
with mean 0 and variances of σ2

r .

p(�r(j)|σ2
r) =

1
(
√

2πσr)2
exp

{
−�r(j)��r(j)

2σ2
r

}
. (7)

From both models, the joint distribution of {f (i,j)
t }

and {�r(j)} is formulated as follows:

p({f (i,j)
t }, {�r(j)}|Θ)

=
N∏

i=1

M∏
j=1

p(f (i,j)
t |d(i), �r(j), σ2

o)
M∏

j=1

p(�r(j)|σ2
r), (8)

where Θ = {{d(i)}, σ2
o , σ2

r}. Additionally, the posterior
distribution of {�r(j)} is

p({�r(j)}|{f (i,j)
t }, Θ) =

p({�r(j)}, {f (i,j)
t }|Θ)

p({f (i,j)
t }|Θ)

. (9)

The specific descriptions of Eqs. 8 and 9 are omitted.

2.3 Computation Algorithm

In order to determine Θ as a maximum likelihood
estimator and to determine {�r(j)} as a MAP esti-
mator, we apply the EM algorithm [7] by treating
{{f (i,j)

t }, {�r(j)}} as a complete data and {�r(j)} as a
missing data.

In the EM algorithm, the E step and the M step are
mutually repeated until they converge. At first, in the
E step, the conditional expectation of the log likelihood
of a complete data with observing {f (i,j)

t }, which is
called Q function, is computed. In the Q function, the
estimated value Θ̂ is used for the parameters values
in the conditional distribution. In the M step, the Q
function is maximized with respect to Θ. The concrete
formulation of both step can be shown in [5]

3 Evaluation of One-Directional Rotation
Performance

To examine the performance of one-directional cam-
era rotation for the one-directional texture, we use
stripe pattern shown in Fig. 2(b) with 128×128 pixels.
Figure 2(a) is a true depth map used for generating
Fig. 2(b). Figure 2(b) consists mainly of horizontal
stripes. With M = 10 and σr = 0.01, which generates
a suitable-sized image motion for the gradient method
with this image pattern, the recovered depth maps are
shown in Fig. 3. It is noted that when the image mo-
tion is too large, the integral-formed method becomes
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(a)

(b)
Figure 2. Example of data used in the evalua-
tions: (a) true depth map; (b) artificial image
used for making the successive images as an orig-
inal image.

effective. The results with M = 50 and M = 100 are
also shown in Figs. 4 and 5. From these results, the ro-
tation around X−axis is apparently unsuitable for this
strip pattern. On the other hand, the rotation around
Y−axis is suitable more than 2-D rotation. The reason
of this fact can be interpreted as follows. The gradient
equation provides no constraints on the depth recovery
for the image point where the spatial gradient of the
image intensity along the optical flow takes zero. If the
rotation around X−axis is only applied to the image
shown in Fig. 2(b), the dominant component of the op-
tical flow is vy and there are many image points taking
small value of fy. Namely, at many image points Eq. 5
is useless for depth recovery.

From Eqs. 2 and 3, when rx = 0, the optical flow is
formulated as follows:

vx = −(1 + x2)ry − Z0ryd, vy = −xyry. (10)

From these equations, we can obtain that vx/vy =
(1 + x2)/xy + Z0d/xy. This means that the direction
of the the optical flow depends on an image position
and the depth corresponding to this position, but it
is independent of ry, i.e. the direction at each im-
age position is constant during one-directional camera
rotations. Additionally, we know that as the image po-
sition moves away from the center, the direction of the
optical flow tends to be slant, although at the center
region the direction of it is almost horizontal. In the
system which we are going to develop in future, we will
use the image motion parallel to the main direction
of the texture in the local region for depth recovery.
Therefore, to evaluate the effectiveness of the perfor-
mance using the image motion parallel to the stripe
as possible, we calculate the root mean square error
(RMSE) by varying the calculation region size. This
calculation region is defined at the center part of the
image, since as the image position approaches to the
center part, the image motion caused by the rotation
around Y−axis becomes parallel to the texture direc-
tion. The evaluation results with σr = 0.01 are shown
in Fig. 6. The horizontal axis of this figure indicates

(a)

(b)

(c)
Figure 3. Recovered depth map with M = 10 and
σr = 0.01: (a) rx and ry are used; (b) rx is used
only; (c) ry is used only.

M . From Fig. 6, for the small calculation region, ry

is effective than the set of rx and ry. We confirmed
also that the RMSE with rx only takes approximately
1.00 independently of the size of the calculation region
and M . In these simulations, there are no image noise,
hence the bad influence caused by the image motion
parallel to the texture direction was not revealed. We
expect that if usual-leveled image noise is added, using
the suitable one-directional rotation for the local tex-
ture direction is effective regardless of the number of
the used images M .

4 Conclusions

In this study, we make a hypothesis that in the dif-
ferential method using random small camera rotations
[5], there is a suitable camera rotation direction ac-
cording to the direction characteristics in the image
texture, and perform the numerical evaluations using
the images having stripe pattern. As a result, even if
there are no image noise, the image motion parallel to
the texture direction is effective for an accurate depth
recovery, and one-directional rotations can be actually
adopted to realize such the situation.

The proposed one-dimensional rotations are effective
furthermore for the integral-formed method [6], since
significant reduction of computation costs can be ex-
pected in the integral-formed method. It is noted that
for the integral-formed method the image motion per-
pendicular to the texture direction is expected to be
suitable, since the motion blur is easy to occur by such
the motion. Therefore, the similar examination will
be carried out for the integral-formed method. Addi-
tionally, we are going to develop the practical system
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(a)

(b)

(c)
Figure 5. Recovered depth map with M = 100
and σr = 0.01: (a) rx and ry are used; (b) rx is
used only; (c) ry is used only.

(a)

(b)

(c)
Figure 4. Recovered depth map with M = 50 and
σr = 0.01: (a) rx and ry are used; (b) rx is used
only; (c) ry is used only.

which partially recovers the depth in order of interest-
ing region with adaptive one-directional camera rota-
tions. In this system, the differential-formed and the

integral-formed methods have to be selectivity used ac-
cording to the fineness of the local texture. Hence, the
decision rule has to be developed also in hurry.
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(a)

(b)

(c)
Figure 6. Recovered depth map with M = 10
and σr = 0.01: RMSE of recovered depth map:
(a) calculation region is 12× 12; (b) 36× 36; (c)
60× 60.
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