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Abstract

In a real-time face tracking and recognition sys-
tem proposed by Oka and Shakunaga, an optimum
weighted average of registered images are estimated and
the weights are used for face identification and shape
inference.Although their method works well even when
a target face changes pose in photometric changes,
both the person identification and expression recogni-
tion could not be robustly solved at the same time be-
cause of a capacity problem. This paper proposes un-
derdetermined approach to solve the capacity problem.
Although a single underdetermined system often results
in some performance reduction, parallel implementa-
tion can remarkably improve the performance. Exper-
imental results showed that the proposed method suc-
cessfully worked for 10-person discrimination when 10
expressions were registered for each person even when
an image sequence included many face motion, expres-
sion, photometric change and occasional occlusions.

1 Introduction

In the area of face tracking and recognition, many
techniques have been developed to cover face appear-
ance changes during tracking. In the statistical ap-
proach [3, 10, 1, 7], appearance changes, analyzed with
manifolds or other statistic models are used. While
these methods seem to provide feasible answers in prac-
tical situations, their performance directly depends on
the training set. In active appearance model(AAM)
approach, a mixed eigenspace of appearances and
shapes is used, where shape is represented by the 2D
positions of feature points [2, 4, 8]. In the AAM
tracker [4], a sophisticated image alignment technique
is developed for covering dynamic shape changes. On
the other hand, photometric effects have not been effi-
ciently considered as well as shape changes.

In recent work, several kinds of appearance changes
have been discussed. Xu et al. [9] showed that a local
multilinear model is useful for face tracking in gradual
deformation, pose changes and photometric changes,
although the proposed system did not work in real-
time. Among them, Oka and Shakunaga [5, 6] pro-
posed an efficient method for a real-time tracking and
recognition to cover pose and photometric changes.
However, the number of face shapes was at most 25 in
their real-time implementation, and scalability seems a
severe problem since their method needs to solve linear
equations. This paper proposes a feasible solution to
increase the number of shapes to 100 or more.

2 Weight Equations in Tracking and Recog-
nition

2.1 Sparse 3D eigentracker

The real-time tracking and recognition method pro-
posed in [5, 6] is composed of two eigen-based meth-
ods – sparse 3D eigentracker and augmented eigenface.
The sparse 3D eigentracker is implemented by a parti-
cle filter in 6D pose space and high-dimensional eigen-
face to track a rigid face with taking photometric ef-
fects into account.

The augmented eigenface is the eigenface augmented
by an associative mapping to the 3D face shape that
is specified by a set of volumetric face models. An
associative mapping is generalized to subspace-to-one
mappings to cover the photometric image changes of
a fixed shape. This technique, called photometric ad-
justment, is introduced and combined with associative
mapping.

However, to keep weight equations stably solvable in
the overdetermined system, the number of registered
persons should be sufficiently less than the dimension-
ality of the eigenface. In this paper, we propose an
underdetermined approach to refrain the unstability
problem even when the number of registered persons
is not sufficiently less than the dimensionality.

2.2 Universal and individual eigenfaces

Let Vkl denote an n-dimensional intensity vector of
the k-th person under the l-th lighting condition. Let
K and L indicate the number of persons, and the num-
ber of lighting conditions, respectively. The universal
and individual eigenfaces are constructed and used as
follows.

When a set of intensity vectors, {vkl}, are calcu-
lated by vkl = Vkl/1�Vkl, the universal eigenface is
constructed by average vector v and m-principal eigen-
vectors Φm. Let this be described as 〈v,Φm〉.

Let PV denote a part of an image, where P is an
n × n diagonal matrix having diagonal elements that
are either 1 or 0. The projection s of PV is calculated
by

s̃ = (PΦ̃m)+(PV), (1)

when Φ̃m = [Φm v] and s̃ =
[
αs� α

]�, and (PΦ̃m)+

denotes the Moore-Penrose pseudo inverse of PΦ̃m.
Once s̃ is calculated from a given part of image PV,
the normalized projection of s̃ is given by ŝ =

[
s� 1

]�.
For each person k, a set of s-representations Sk =

{skl | l = 1, · · · , L} is calculated by projection of a set
of intensity vectors {Vkl | l = 1, · · · , L} to universal
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eigenface. The k-th individual eigenface 〈sk,Θk〉 is
constructed from Sk in the s-domain, where sk and Θk

denote the average and the k-th individual eigenspace.

2.3 Weight equations

In Oka and Shakunaga [5, 6], linear equations are
solved for both person identification and shape infer-
ence. Let these be called the weight equations. The
definition and the solution of the weight equations are
summarized as follows.
(1) Projection to universal eigenface
When an image vector V is selected and P is designed,
the projection s of PV to the universal eigenface is
calculated using Eq. (1). (We can set P = I, when full
projection is necessary.)
(2) Photometric adjustment
In the s-domain, for each k, a projection of s to the
k-th individual eigenface is calculated by

sk = ΘkΘk
�(s− sk) + sk. (2)

(3) Solving the weight equations
After all sk are calculated from s, the following linear
equations, named the weight equations, are described
as

ŜKw =
[

s1 · · · sK

1 · · · 1

]
w = ŝ, (3)

where ŜK = [̂s1 · · · ŝK ] and w = [w1 · · · wK ]�. The
optimum solution of Eq. (3) is given by w = Ŝ+

K ŝ
and indicates the weights of individual person. Person
identification is accomplished by selecting

kmax = argmax wk. (4)

2.4 Problems with weight equations

In Oka and Shakunaga [5, 6], the weight equations
serve an essential role in the tracking and recognition
framework.

Let K and M denote the number of persons and
m + 1, where m is the dimensionality of the eigen-
face. Then, the computational cost to solve the weight
equations is O(K3) in the overdetermined system. For
implementing a real-time tracking and recognition of
human faces, there is no fatal problem in the compu-
tational cost for the weight equations when K ≈ 100.

However, since ŝ and ŜK are generated during track-
ing, they often include many noise. In order to solve
the weight equations stably, K should be sufficiently
less than M . On the other hand, M could not be so
large because the dimensionality of the eigenface af-
fects the other aspects of the real-time tracker. There-
fore, another feasible solution should be found for the
weight equations.

3 Parallel Underdetermined Approach

3.1 Solution in underdetermined system and
parallel approach

A feasible solution is provided by parallel underde-
termined systems as follows: Let m′ denote the di-
mensionality of each independent subspace in the m-
dimensional eigenspace. When m = Jm′ holds, we can

easily implement J-parallel underdetermined systems
in the entire eigenspace. That is, the weight equations
defined in Eq.(3) are rewritten to

⎡
⎢⎢⎢⎣

S(1)
K
...

S(J)
K

1�

⎤
⎥⎥⎥⎦w =

⎡
⎢⎢⎢⎣

s(1)

...
s(J)

1

⎤
⎥⎥⎥⎦ , (5)

where S(j)
K and s(j) denote the j-th m′-row submatrix

and subvector of SK and s, respectively. Then, the
j-th weight equations are represented as[

S(j)
K

1�

]
w(j) =

[
s(j)

1

]
, (6)

where w(j) is the optimum solution of the j-th weight
equations.

After solving all the equations, the average of all the
optimum solutions is represented by

w =
1
J

J∑
j=1

w(j). (7)

The final weight vector is used for person identifica-
tion and shape inference. (When partial projections
are combined with weight equations, partial subimages
are more precisely approximated by weighted averages
of dictionary images. In the cases, similarities are cal-
culated in each subimage in each underdetermined sys-
tems.)

When m′ + 1 < K holds, Eq. (6) is underdeter-
mined, and there is (K −m′− 1)-dimensional solution
space of w(j). In the underdetermined system, the
pseudo inverse solution provides w(j) so as to mini-
mize w(j)�w(j) in the solution space.

In the SVD implementation, since the computational
cost of the linear equations is O((m′+1)3) in each un-
derdetermined system, the total computational cost for
the parallel underdetermined systems is O(J(m′+1)3).
This cost is lower than the computational cost O(K3)
for solving Eq. (3). Although the final optimum vector
(Eq. (7)) is different from the solution of Eq. (3), it
can provide a reliable approximation.

3.2 Biased weight equations

When the weight equations are underdetermined, all
the weights(w1 · · ·wK) are estimated so as to minimize
w(j)�w(j) in the solution space without considering
image similarities between the unknown image v and
each vk. If appropriate image similarities are consid-
ered in the optimization, better weighted average is
expected to be generated by the weight equations.

Let us assume that the image similarity between s
and sk is given by inverse distance of them.Let us in-
troduce a K ×K diagonal matrix B to rebalance the
weights with considering inverse distances.

B = diag
(

d−1(s, s1) · · · d−1(s, sK)
)

(8)

where d(s, sk) =
√

(s− sk)�(s− sk). (9)
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In B, diagonal terms indicate inverse distances from s
to each sk. When sk = s, a large number should be
used for the k-th diagonal term instead of ∞.

Substituting w(j) = Bw′(j), the following linear
equations, named the biased weight equations, are de-
scribed as,

Ŝ(j)
K Bw′(j) = ŝ(j), (10)

where Ŝ(j)
K = [̂s(j)

1 · · · ŝ(j)
K ]. The optimal solution of

Eq. (10) is given by

w(j) = B[Ŝ(j)
K B]+ŝ(j). (11)

It should be noted that Eq. (11) still provides a solu-

tion of the original weight equations. Since w′(j)
�
w′(j)

is minimized in the biased weight equations, w(j) is op-
timized with considering distances between s and each
sk.

In the parallel implementation, each underdeter-
mined system could be transformed to the biased
weight equations with using the same distances mea-
sured in the universal eigenface.

Relation to nearest neighbor criterion
There is a simple relation between the biased weight
equations and the nearest neighbor criterion. In our
formulation, the weight equations are specified in the
m-dimensional eigenspace, and distances are also mea-
sured in the same dimensional eigenspace. However,
the dimensionalities can be different from each other.

Suppose that the weight equations are specified in
a very low dimensional space with keeping the dis-
tances defined in m-dimensional space. When the
weight equations get specified in 0-dimensional space,
ŜK = 1� and ŝ = 1. Therefore, Eq. (11) becomes

w = B[1�B]+ =
1∑K

k=1 d−2(s, sk)

⎡
⎢⎣

d−2(s, s1)
...

d−2(s, sK)

⎤
⎥⎦ .

(12)
In this case, the heaviest person indicated by Eq. (4)
becomes equivalent to the nearest neighbor person.

4 Experiments

4.1 Training set and universal and individual
eigenfaces

The training set consisting of 10 faces in 10 ex-
pressions, called Data-10x10, is used in this paper.
For each combination of person and expression, a face
shape was taken by a range finder, and 24 images were
taken by a camera under different lighting conditions.
Therefore, Data-10x10 consists of 2400 images and 100
shapes.

A 140D universal eigenface, called EF10x10, was
constructed from 2400 images in Data-10x10. The di-
mensionality of EF10x10 was determined by the small-
est dimension where the cumulative contribution rate
reached 95%. The average and the principal compo-
nents of Φ̃m of EF10x10 are shown in Fig. 1. The
augmented eigenface, called AEF10x10, was also con-
structed from EF10x10 and associative mapping to 3D

Figure 1. Φ̃m of EF10x10.

(a)

(b)

(c)

Figure 2. Examples of Data-10x10

shape. In EF10x10, individual photometric eigenfaces
were also constructed from 24 images for each person in
each expression. The individual eigenfaces were used
for photometric adjustment.

4.2 10-person discrimination in expressional and
photometric changes

We evaluated the performance of tracking and recog-
nition when augmented eigenface was constructed for
10 persons with 10 expressions for each person. In
this experiment, individual eigenfaces were generated
for each combination of person and expression from 24
images in each combination. Therefore, 10 expression
subspaces were prepared for each person. For each ex-
pression of each person, 24 images were continuously
taken by switching 24 light sources automatically. A
range image was also taken separately by a range sen-
sor. Since a 24-image set and the range image were
taken separately, they were automatically calibrated
to suppress positional noises. Figure 2 indicates a set
of images and shapes: (a) shows 10 expressions of a
person taken under a particular lighting condition, (b)
indicates 10 shape data of (a), and (c) shows 24 images
of a particular expression taken under different lighting
condition.

Test image sequences
For each of 10 persons, a 1200-frame image sequence
was taken in a room under an artificially controlled
lighting condition while the person kept changing ex-
pressions and face poses. Therefore, the test image se-
quences include a lot of photometric and expressional
changes along with pose changes.

Three quality levels of cropped images
Some pose estimation errors are inevitable during face
tracking because of photometric and pose changes.
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Frame 60 Frame 74 Frame 250 Frame 477 Frame 564
Detected Discriminated Personal tracking

Frame 450 frame 467 frame 677 frame 774 frame 1101
Detected Discriminated Personal tracking

Figure 4. Examples of tracking and recognition.
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Figure 3. Change of person discrimination rate.

They often affect the quality of projection to the eigen-
face, and result in erroneous weight estimation. Fur-
thermore, the tracker sometimes fails to track in se-
vere conditions. Taking these situations into account,
we classify a cropped image into three classes in each
frame and design robust and fast discrimination rules
in each quality level.

The three classes are defined by the following three
parameters; rotation from estimated pose and frontal
face (r), normalized correlation between input im-
age and projected image (c), and maximum weight
(wmax).These parameters show different aspects of the
tracking result. When r is large, the image is likely
to be unreliable. Parameter c indicates how well an
input image is represented by the universal eigenface,

and wmax indicates how well the weight equations are
solved. By using these parameters, we can define the
following three classes:

1. Good frames r ≤ 30deg., c ≥ 0.995, wmax ≥ θ1.

2. Effective frames Not good frames, r ≤ 30deg.,
c ≥ 0.992, and wmax ≥ θ2.

3. Ineffective frames All other frames.

θ1 and θ2 are tuned to 0.7 and 0.65 for the overde-
termined system, and 0.35 and 0.3 for the parallel un-
derdetermined system. Note that the parallel underde-
termined system provides milder peaks than does the
overdetermined system. Therefore, θ1 and θ2 were set
to smaller values.

Discrimination rules for image sequence
Robust and fast face discrimination rules are defined
for good and effective frames as follows:

1. If the current frame is good, the image is discrim-
inated as a person whose weight is maximum.

2. If the current frame is effective, and if a person
whose weight is maximum is the same as the per-
son in the previous and the second previous ef-
fective frames, the image is discriminated as the
person.

Compared methods
The following methods are compared:

1. NN: Nearest neighbor discrimination in 140D
EF10x10.

2. OD: Overdetermined system of the original weight
equations: s and SK are coded in 140D EF10x10.
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3. PUD: 5-parallel underdetermined systems of the
weight equations: s(j) and S(j)

K are coded in the
j-th 28D subspace for EF10x10.

4. PUD(biased): 5-parallel underdetermined sys-
tems of the biased weight equations.

Experimental results
Figure 3 shows the correct discrimination rates vs. the
number of frames from detection when 100 detection
frames were randomly selected between 0 and 900 from
each 1200-frame sequence. Therefore, 1000 test se-
quences in total were used for the experiment.

Among the compared methods, PUD(biased)
showed the highest discrimination rate, and PUD also
provided good result. Although OD and PUD(biased)
provided no false discrimination (with 1.8% and 1.9%
rejection, respectively), these curves showed that par-
allel underdetermined approach could perform person
identififation more quickly than the original method.

As shown in Fig. 3, PUD reached a correct answer
with probability about 60% within 30 frames (= 1
sec) and with probability 86% within 90 frames (=
3 sec). OD reached a correct answer with probability
26% within 30 frames and with probability 78% within
90 frames. These results showed that PUD could re-
markably improve the performance.

Figure 4 shows how AEF10x10 worked with the par-
allel underdetermined method on test image sequences.
When a face was detected, as shown in the leftmost
image, the initial texture and shape were set to av-
erage ones and they were gradually updated by the
augmented eigenface during tracking the face. Person
identification was accomplished in the second image.
After the identification, the identified person was more
stably tracked and expression recognition was contin-
ued using 10 subspaces of the particular person, as
shown in the rest 3 images. Under each input im-
age, interpreted face expression is shown in frontal and
oblique views. All the processes worked in real-time.

4.3 Comparison of computational time

As mentioned in 3.1, the total computational cost of
the Eqs. (3) and (11) are O(K3) and O(J(m′ + 1)3),
respectively.

In the current implementation, we compared pro-
cessing times of the weight equations(Eq. (3)) and the
biased weight equations(Eq. (11)). The processing
times of Eqs.(3) and (11) were about 3.3 msec and 2.1
msec when 140D eigenface is applied for identification.

In another experiment, when the number of reg-
istered person increases 249, the processing times of
Eq.(3) and Eq.(11) were about 6.1 msec and 2.1 msec.
These results showed that parallel underdetermined
approach can improve the computational cost of weight
estimation.

5 Conclusions

This paper proposed the underdetermined approach
to solving the weight equations proposed in Oka and
Shakunaga [5, 6]. Although a single underdetermined
system often results in some performance reduction,
parallel implementation of underdetermined systems

can remarkably improve the performance reduction.
Experimental results show that the proposed method
successfully works in real-time face tracking and recog-
nition of 10 faces with 10 expressions.
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