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Abstract

Automatic pupil detection is often required as a nec-
essary function in modern Ophthalmology diagnosis.
After analyzing the major challenges existing in vari-
ous diagnosis environments, this paper suggests a step-
wise work–flow combining machine vision algorithms
including spatial convolution, circular Hough trans-
form and region growing, to provide robust and preci-
sion alignment between diagnostic system and patient’s
pupil. Experiments on a large scale image data–set as
well as on live devices show that critical requirements
in clinic diagnosis have been satisfied.

1 Introduction

Ophthalmology diagnosis often needs to closely ob-
serve a patient’s eye and pupil. As clinic key data,
biometric measurements, for instance, the axial length,
the corneal curvature, the corneal thickness, etc., must
be accurately measured. Because these measurements
conceptually depend on the alignment between two op-
tical axes (one for the human eye and another one for
the measuring system), it is vital to obtain and keep
such an alignment during a measuring period. For
higher level of robustness, accuracy, and efficiency in
clinic diagnosis, automatic pupil detection/alignment
is frequently required.
The problem of object detection has been exhaus-

tively investigated for decades in the field of ma-
chine vision [1]. Particularly for automatic human
pupil detection, plenty of methods together with their
hardware design have been suggested in at least
three different areas. Required by intelligent human–
machine interface, eye/pupil tracking techniques based
on dark/bright pupil caused by off–axis or on-axis in-
frared (IR) illumination have been addressed for a long
time [5] [6], where image difference method is often
adopted for stronger pupil signal. Extending these con-
cepts with multiple light sources, multiple pupil detec-
tion/tracking is also possible [7]. Other than eye track-
ing techniques estimate pupil center in a coarse scale,
iris recognition based personal identification requires
more accurate pupil localization and pupil/iris seg-
mentation [8], where algorithms including Graph cuts
[9], circle/ellipse fitting [10], Circular Hough transform
[11], and so on, are widely employed for precise pupil
boundary description. Many pupil detection meth-
ods have also been suggested for clinic applications.
Examples include pupil parameter estimation for eye
fixation/micro–movement analysis [12], active contour
based pupil descriptor for diagnosing bipolar disorder
[13], pupil segmentation and contour extraction for
Ophthalmology applications [14], so on and so forth.

Although many methods have been already sug-
gested for pupil detection, all of them are either
strongly hardware dependent, or imaging condition
limited. By the way, all the above methods work on
focused images, where system focusing is assumed to
be fulfiled before pupil detection.

The environment for Ophthalmology diagnosis is of-
ten unpredictable. It might be under the sun shine, or
might be in a dark room, with or without a desk lamp.
Also, the short observing distance makes it easy to
lose the optical focus. Moreover, an existing diagnos-
tic device normally has already its success market, its
medical certifications, and its mature system design.
It is natural to be asked that hardware modifications
should be minimized when adding a new software mod-
ule such as pupil alignment.

As a medical application in Ophthalmology, this
paper suggests a stepwise work–flow combining algo-
rithms of spatial convolution [2], circular Hough trans-
form [3], and region growing [1] together, for automatic
pupil detection and pupil/system alignment. The spa-
tial convolution decomposes a source image into scale
dependent components; the circular Hough transform
picks out characteristic object from a parameter space;
the region growing algorithm figures out a pupil region
from the image; based on these stepwise results, system
focusing level and the pupil/system alignment level are
further evaluated.

The rest of this paper will be organized as following:
In next section, the problem faced in this paper will be
clarified together with a short system description; In
Section 3 the work–flow as well as stepwise measure-
ments will be introduced in details; Experiments will
be described in Section 4; Two points will be discussed
in Section 5; Finally Section 6 concludes this paper.

2 System description

A diagnostic device in Ophthalmology normally in-
cludes a pupil/eye imaging module using a video cam-
era. An active illumination by infrared LEDs (Light
Emitting Diodes) is often adopted for better and con-
sistence clinic observation under various environments.
LEDs are often peripherally placed surrounding the
system lens for illumination uniformity. Fixation point
or object is designed for patients to fix their eyes by
gazing on it. The diagnostic device could be adjusted
in (x, y, z) space (Fig.1) for axis alignment between the
imaging module and a measured eye. A measuring ac-
tion is triggered when a satisfied alignment is achieved,
which is evaluated based on individual video frames
(Fig.2), where distinct three parts: the dark pupil, the
gray iris, and the relatively bright (white) sclera, are
included together with the cornea reflection of the IR
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Figure 1. An Ophthalmology diagnosis.

LEDs1. If the two optical axes are aligned, the dark
pupil region should be covered by LED spots. Oth-
erwise, LED spots and the pupil region are deviated
from each other, as shown in Fig.2(a) and Fig.2(b).

3 Pupil detection/alignment

Aligning a diagnostic device with an eye is equivalent
to answer questions: 1), Where are the LED spots? 2),
How good those spots are? 3), Is there a pupil nearby
those spots? 4), Is the pupil sharp enough? 5), Is the
pupil properly covered by LED spots?
A four–step work–flow is suggested to answer these

questions: content decomposition, infrared spot detec-
tion, pupil detection and alignment evaluation.

Content decomposition: It is widely accepted
that a shading pattern caused by imperfect optics
mainly occupies low frequencies in the frequency do-
main. On another hand, infrared spots are designed to
be small, but always bright spots in an observed image.
Given an observed image, I, its low frequency com-

ponent, Is, could be generated by a spatial convolution

Is(x, y) = I(x, y)⊗ w(x, y|ls), (1)

where w(x, y|ls) is a two dimensional window function
given its window size ls. The shading free content If
could be estimated by

If (x, y) = I(x, y)/Is(x, y), (2)

where a multiplicative shading is assumed(Fig.3(b)).
Given a smaller window size, lm, we may get

Imf (x, y) = If (x, y)⊗ w(x, y|lm). (3)

The bright spots are then characterized as It:

It(x, y) =
{If (x,y)−Im

f (x,y)

Im
f (x,y) , if If (x, y) > Imf (x, y) > δt

0, otherwise
,

(4)
where factor δt > 0, for avoiding extreme values.

Infrared spots: Six infrared spots are designed
peripherally placed on a virtual circle, specified by its
center �xc ≡ (xc, yc), and its radius rc. The circular
Hough transform is chosen as a spot detector:

(�xc, rc) ≡ (xc, yc, rc) = argmax
x,y,r

h(x, y, r), (5)

1The situation that an eye is totally outside the imaging scope
will not be addressed in this paper.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. Typical images in clinic diagnosis: (a)–
(g) observed images with various environmental
illuminations; (h) model–eye for system calibra-
tion.

(a) (b)

(c) (d)

Figure 3. Scale dependent components in an ob-
served image: (a), the source image; (b), the
global shading; (c), the spot map; (d), the eye
content without shading and spots.
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where

h(x, y, r) =
∑

|(x′,y′)−(x,y)|=r

It(x′, y′) (6)

maps It onto a parameter space h.
The quality of infrared spots is measured based on

an one–dimensional curve, Cs(θ), as

Cs(θ) =
∑

r′≤r≤r′′
It(r, θ|�xc), (7)

where r′ < rc and r′′ > rc, denote the radius range
of pixels contributing to the arc–length projection in
Eq.7. (r, θ) denote polar coordinates, where we have
r = |�x− �xc|, x = r cos θ, and y = r sin θ.
The curve Cs(θ) for Fig.3(c) and its normalized ver-

sion are shown in Fig.4(a) and Fig.4(b). Based on the
normalized curve, the spot quality is evaluated as the
average width of 6 peaks.

Pupil: A pupil is normally observed as a dark
region nearby the infrared spots. Initially a dark seed
�xd ≡ (xd, yd) as the pixel with minimum value nearby
the detected spots should be found on the shading free
image If (Fig.3(d)), a region with one pixel,

Δ ≡ Δ0 = (xd, yd), (8)

and its boundary Ω ≡ Ω0 could be identified. A region
growing algorithm

Δi+1 = Δi ∪ {bi}, (9)

Ωi+1 = (If −Δi+1) ∩ (Δi+1 ⊕ 1) (10)

is suggested as a two–step procedure (where ⊕ denotes
a dilation operation). The candidate pixel to be added
into a pupil is picked out by

bi =

{
argmaxb∈Ωi p(b|Δi), if i < Nr or p > δr
null, otherwise

(11)
where p(b|Δi) denotes the probability of a boundary
point b being added into the ith pupil region. Nr gives
out a minimum number of pixels for estimating the
value distribution of Δi, and δr is a threshold used as
stop condition.

The sharpness of a detected pupil (e.g. Fig.5) is es-
timated as the average gradient of its boundary points.

Alignment: The alignment between two axes
is determined based on a basic assumption, that a
pupil has a simply round shape thus that could be
roughly covered by an ellipse. The alignment measure
is defined as

A =

{|(xp, yp)− (xc, yc)|, if Q > δca and |Δ| > δpa
∞, otherwise

,

(12)
where (xp, yp) denotes the center of an ellipse covering
the detected pupil, Q and |Δ| denote the spot quality
and the pupil size respectively (which should be larger
than two thresholds δca and δpa). If two optical axes
are aligned to each other, the distance between two
centers, say, the center of a pupil and the center of
infrared spots, should be small.

(a)

(b)

Figure 4. LED spot quality: (a), the curve from
an arc–length projection based on the detected
circle; (b), its normalized curve for spot quality
evaluation.

Figure 5. Pupil detection: the virtual LED circle,
the dark seed and the estimated pupil boundary.

4 Experiments

Experiments on still images: The data–set
of 1260 still images includes 255 images for system–
test–eyes (Fig.2(h)), 217 images for very bright envi-
ronment, 421 for very dark environment, and 546 im-
ages for variously out–focused pupils. About 300 hu-
man eye images were taken from 23 named persons
by one prototype device, and other images were taken
from anonymous patients by other 8 pre–production
devices. Being tested on the targeting system (Intel(R)
Core(TM)2 Dual CPU (2.40GHz), 2GB RAM, Win-
dows XP Professional OS), the suggested work–flow
averagely spent 0.0645 second per image, where 0.235
second was the maximum.

The robustness and accuracy of the workflow were
evaluated by stepwise FALSE ratios (Table 1), where
a FALSE signal inside the workflow means its results
give out wrong suggestion to clinic doctors.

Experiments on live videos: Live video tests
were performed on 9 production devices, where pupil
detection work–flow was integrated into an automatic
measuring procedure. Experiments on live devices
have shown a great success both for system test eyes

232



Situations SC(%) SQ(%) PF(%) AD(%)
test eyes 5.1 3.1 11.4 3.1

human eyes 0.9 0.8 4.3 0.8
bright illum. 1.4 0.5 0.8 0.5
dark illum. 1.2 1.0 10.7 1.0

normal illum. 1.3 1.8 1.4 1.8
prototype 0.6 0.4 0.8 0.6

other devices 2.7 2.0 0.8 1.9
focused 1.0 1.1 0.9 0.9

out–focused 2.7 1.5 6.5 1.8
total 1.8 1.3 8.5 1.4

Table 1. Algorithm false ratio on individual steps:
SC(spot center), SQ(spot quality), PF(pupil fo-
cus) and AD (Alignment decision).

(a) (b)

Figure 6. Mis–leading sharp edges for automatic
pupil focusing.

and for more than 50 human patients, with various
environmental illuminations.

5 Discussions

Other than usually working on binary edge points,
in this paper the Hough transform works on gray level
data together with additional considerations [4]: a),
the signal of a targeting object should be strong enough
to result in a dominate peak in the object parameter
space; b), the object detection is biased (Fig.5) because
of the various gray values; c), for efficiency, mapping
large amount of pixels should be avoided.
Unlike popular auto–focusing methods based on an-

alyzing the image frequency, this paper evaluates the
focusing level by infrared spot quality and the pupil
boundary sharpness. The motivation of this is to avoid
mis–leading sharp edges, as shown in Fig.6(a) and 6(b),
where specular (corneal) reflection always generates
sharp edges which are irrelevant to optical focus.

6 Conclusions

Aiming at automatic alignment between a measuring
device and its measured eye, pupil detection problem
in Ophthalmology diagnosis has been clarified in this
paper. A four–step work–flow combining popular ma-
chine vision algorithms has been suggested. Working
with such a work–flow, an observed image is decom-
posed into global shading, bright spots, and a human
eye image. Characterizing features including infrared

spots and dark pupil could be detected and evaluated.
Experiments on both still images and live diagnostic
devices show that the suggested work–flow successfully
satisfies major requirements in clinic applications, thus
that be greatly helpful for flexible, precision and robust
Ophthalmology diagnosis.
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