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Abstract

It is well-known that fisheye cameras can be very
useful in real applications due to their large field of view
when compared to classic perspective cameras. This pa-
per considers the fundamental problem of multiple-view
triangulation for fisheye cameras. A geometric crite-
rion is introduced in this paper for this problem, which
consists of determining the scene point that minimizes
the angles between the projections of the available im-
age points and of the sought point itself. A solution
based on convex optimization is proposed in this paper
for this criterion, which consists of solving an eigen-
value problem. Numerical investigations carried out
with synthetic and real data suggest that the proposed
criterion provides significantly better estimates than al-
gebraic criteria.

1 Introduction

Multiple-view triangulation is the process that at-
tempts to recover a scene point from its available im-
age projections on two or more cameras located in
the scene. Due to image noise and calibration errors,
this process generally provides an estimate only of the
sought point, which depends on the criterion chosen
to match the available image points with the image
projections of the estimate on all the cameras.
For perspective cameras, multiple-view triangulation

has been studied for a long time. The contributions
typically consider a geometric criterion for defining the
estimate of the sought point since geometric criteria
generally provide more accurate results than algebraic
ones. A commonly adopted geometric criterion is the
minimization of the reprojection error in the L2 norm,
for which several solutions have been proposed. In [4],
the authors show how the exact solution of triangu-
lation with two-views can be obtained by computing
the roots of a one-variable polynomial of degree six.
For triangulation with three-views, the exact solution
is obtained in [6] by solving a system of polynomial
equations through methods from computational com-
mutative algebra, and in [1] through Groebner basis
techniques. Multiple-view triangulation is considered
also in [5] via branch-and-bound algorithms and in [2]
via semidefinite programming. Other geometric crite-
ria include the minimization of the reprojection error
in the L∞ norm.
This paper considers the problem of multiple-view

triangulation in a vision system with fisheye cameras.
Indeed, as it is well-known, fisheye cameras can be very
useful in real applications due to their large field of
view when compared to classic perspective cameras.
Fisheye cameras can be modeled through a spheri-
cal projection followed by a perspective one. Hence,

a geometric criterion for defining the solution of the
multiple-view triangulation problem is introduced in
this paper, which consists of determining the scene
point that minimizes the angles between the projec-
tions on the sphere of the available image points and
of the sought point itself. This criterion can be re-
garded as an alternative L2 norm criterion for perspec-
tive and non-perspective cameras, since the angles are
proportional to the euclidean distances between the
available and the sought projections on the spheres.
A solution based on convex optimization is proposed
in this paper for this criterion, which consists of solv-
ing an eigenvalue problem, i.e. the minimization of
a linear function subject to linear matrix inequality
constraints. Numerical investigations carried out with
synthetic and real data suggest that the proposed cri-
terion provides significantly better estimates than al-
gebraic criteria.

2 Proposed Approach

Notation: MT : transpose of matrix M ∈ R
m×n; In:

n × n identity matrix; 0n: n × 1 null vector; ei: i-th
column of I3; SO(3): set of all 3× 3 rotation matrices;
SE(3): SO(3) × R

3; ‖v‖: 2-norm of v ∈ R
n; s.t.:

subject to.
Let Fi = (Oi, ci) ∈ SE(3) denote the coordinate

frame of the i-th fisheye camera, where the rotation
matrix Oi ∈ SO(3) defines the orientation and the
vector ci ∈ R

3 defines the position expressed with re-
spect to a common reference coordinate frame F ref ∈
SE(3). Each fisheye camera consists of a spherical pro-
jection followed by a perspective projection, see e.g.
[3, 7]. The center of the sphere coincides with ci while
the center of the perspective camera is given by

di = ci − ξiOie3 (1)

where ξi ∈ R is the distance between ci and di. Let

X = (x, y, z)T (2)

denote a generic scene point, where x, y, z ∈ R are
expressed with respect to F ref . The projection of X
onto the image plane of the i-th fisheye camera in pixel
coordinates is denoted by pi ∈ R

3×3 and is given by

pi = Kixi (3)

where Ki ∈ R
3×3 is the upper triangular matrix con-

taining the intrinsic parameters of the i-th fisheye cam-
era, and xi ∈ R

3×3 is pi expressed in normalized coor-
dinates. The image point xi is the perspective projec-
tion of the spherical projection of X. Specifically, the
spherical projection of X is given by

Xi = Ai(X) (4)
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where

Ai(X) =
OT

i (X− ci)∥∥OT
i (X− ci)

∥∥ , (5)

while the perspective projection of Xi is given by

xi = Bi(Xi) (6)

where

Bi(Xi) =
1

eT3 Xi + ξi‖Xi‖

⎛
⎝

eT1 Xi

eT2 Xi

eT3 Xi + ξi‖Xi‖

⎞
⎠ . (7)

The solution for pi in (3) as a function of X is denoted
by

pi = Φi(X). (8)

The multiple-view triangulation problem for fisheye
cameras consists of estimating X from estimates of the
image points pi (denoted by p̂i) and functions Φi (de-

noted by Φ̂i), i = 1, . . . , N , where N is the number of
fisheye cameras:

given
{(

p̂i, Φ̂i

)
, i = 1, . . . , N

}
, estimate X. (9)

In order to address this problem, we introduce a geo-
metric criterion which consists of determining the scene
point that minimizes the angles between the projec-
tions on the sphere of the available image points and
of the sought point itself. In particular, we define this
criterion according to

X̂ = argmax
X

g

s.t. eT3 Ô
T
i (X− ĉi) ≥ 0 ∀i = 1, . . . , N

(10)
where the constraint ensures that the estimated point
lies in front of the cameras, and g ∈ R is the reprojec-
tion error

g =
1

N

∑
i=1,...,N

âTi b̂i (11)

where âi ∈ R
3 is the estimated spherical projection of

X on the i-th fisheye camera (expressed in Fi), and

b̂i ∈ R
3 is the back projection of p̂i on the sphere of

this camera (expressed in Fi), i.e.

âi = Âi(X)

b̂i = B̂−1

i (p̂i).
(12)

In fact, since âi and b̂i are unitary norm vectors, it
follows that

âTi b̂i = cos θi (13)

where θi ∈ [−π, π) is the angle between âi and b̂i in the
plane containing these vectors. The expression for âi
is given by (5) replacing Oi and ci with their available
estimates, i.e.

âi =
ÔT

i (X− ĉi)∥∥∥ÔT
i (X− ĉi)

∥∥∥
, (14)

while the expression for b̂i is obtained inverting (3)
and (7). The criterion (10) can be regarded as an al-
ternative L2 norm criterion for perspective and non-
perspective cameras, since the angles are proportional

to the euclidean distances between the available and
the sought projections on the spheres.
Let us now address the solution of (10). The optimal

cost of (10) is given by

max
X

1

N

∑
i=1,...,N

⎛
⎝ ÔT

i (X− ĉi)∥∥∥ÔT
i (X− ĉi)

∥∥∥

⎞
⎠

T

b̂i

s.t. eT3 Ô
T
i (X− ĉi) ≥ 0 ∀i = 1, . . . , N.

(15)

As it can be seen from (15), finding the solution of
the proposed criterion requires the maximization of an
irrational function in the variable X. In order to ad-
dress this optimization problem, we propose the use of
convex programming as follows.
First, let us rewrite (15) in the equivalent form

sup
z

h(z)

s.t.

⎧⎪⎪⎨
⎪⎪⎩

li(z) = 0

mj(z) ≥ 0

∀i = 1, . . . , N

∀j = 1, . . . , 2N

(16)

where z is the new variable defined by X and slack
variables y1, . . . , yN ∈ R as

z = (X, y1, . . . , yN )T , (17)

and h(z), li(z) and mj(z) are polynomial functions of
z. In order to solve (16), we define the new optimiza-
tion problem

min
q,ri,sj

q

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p(z) ≥ 0

sj(z) ≥ 0

∀j = 1, . . . , 2N

∀z ∈ R
3+N

(18)

with

p(z) = q− h(z)−

N∑
i=1

ri(z)li(z)−

2N∑
j=1

sj(z)mj(z) (19)

where q ∈ R is an auxiliary variable, and
r1(z), . . . , rN (z) and s1(z), . . . , s2N (z) are auxiliary
polynomial variables of fixed degrees.
Second, let us express the polynomial p(z) as

p(z) = t0(z)
T (P+ L(α)) t0(z) (20)

where t0(z) is a vector containing monomials in z, P is
a symmetric matrix, and L(α) is a linear parametriza-
tion of the set

L =
{
L = LT : t0(z)

TLt0(z) = 0
}
. (21)

Similarly, the polynomials ri(z) and sj(z) can be ex-
pressed as

ri(z) = RT
i ti(z)

sj(z) = tN+j(z)
TSjtN+j(z)

(22)

where Ri is a vector, Sj is a symmetric matrix,
t1(z), . . . , t3N (z) are vectors containing monomials in
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z. In order to get the sought candidate estimate of the
criterion (15), we define the final optimization problem

min
q,Ri,Sj ,α

q

s.t.

⎧⎨
⎩

P+ L(α) ≥ 0

Sj ≥ 0

∀j = 1, . . . , 2N.

(23)

Problem (23) consists of minimizing a linear cost func-
tion subject to linear matrix inequality constraints,
and belongs to the class of eigenvalue problems. Eigen-
value problems are convex optimization problems since
the cost function is linear and hence convex, and the
feasible set is the intersection of feasible sets of LMIs
which are convex. Several toolboxes have been de-
veloped for solving eigenvalue problems, based for in-
stance on interior-point methods.
Solving the eigenvalue problem (23) provides the

sought candidate optimal cost of the criterion (15).
From the optimal values of the variables of (23), one
can obtain the sought candidate estimate of the cri-
terion (15). Indeed, let T be the matrix P + L(α)
evaluated for such optimal values, and let U, S and V
be the SVD of T, i.e.

T = USVT . (24)

Let v be the last column of V, and let be v0, . . . , v3 be
the entries of v in the positions of the monomials 1, x,
y and z in the vector t0(z) (remember that x = eT1 X,
y = eT2 X and z = eT3 X from (2)). The candidate for

X̂ in (10) is given by

X̄ =
1

v0
(v1, v2, v3)

T . (25)

Indeed, at optimality, one obtains p(z) = 0 for X re-

placed by X̂ since p(z) and sj(z)mj(z) are nonnegative.
Consequently, one has that t0(z)

TTt0(z) = 0, and
since T is positive semidefinite, it follows that t0(z)
is an eigenvector of the null eigenvalue of T.

3 Examples

3.1 Synthetic Data

Here we present some results obtained with synthetic
data. Specifically, we have generated 500 vision sys-
tems, each of them composed by a scene point to re-
construct (denoted hereafter as X) and 4 fisheye cam-
eras with 180 degrees-field of view, in particular with
parameter ξ = 0.5. For each vision system, X and
the centers of the cameras are randomly chosen in a
sphere of radius 100 centered in the origin of the refer-
ence frame, while the orientation matrices of the cam-
eras are randomly chosen under the constraint that X
is visible by the cameras. Figure 1 shows some of the
vision systems and corresponding image projections.
In order to generate the corrupted data, we have:

• added random variables in the interval [−η, η] pix-
els to each coordinate of the image points, where
η ∈ R defines the noise intensity;

• multiplied ξ and each intrinsic parameter times
random variables in the interval [1 − η/100, 1 +
η/100];

• multiplied the camera centers and the angles of
the rotation matrices times random variables in
the interval [1− η/100, 1 + η/100].

Then, we have repeated the triangulation for 3 num-
bers of available cameras (i.e., 2, 3 and 4) and for 4
values of noise intensity (i.e., η = 0.5, 1, 1.5, 2), hence
solving a total number of 3 × 4× 500 = 6000 triangu-
lation problems.
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Figure 1. Synthetic data: (a) scene points (“+”
marks) and fisheye cameras for 10 of the 500 vi-
sion systems; (b) image projections of such scene
points (“o” marks) and boundary of the visible
region (solid line).

Table 1 shows the average 3D error obtained with the
proposed method (denoted by “this”), i.e. ‖X̄ − X‖
where X̄ is given by (25). For comparison, we have
computed also the average 3D error obtained by min-
imizing the algebraic error with standard linear least-
squares (denoted by “algebraic”). As we can see, the
proposed method provides quite better estimates.
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N = 2 (2000 points)
method \ η 0.5 1 1.5 2

this 1.9145 3.592 5.8116 7.8517
algebraic 2.021 3.6212 6.1174 8.1519

N = 3 (2000 points)
method \ η 0.5 1 1.5 2

this 0.96464 1.9393 2.7042 3.6104
algebraic 1.0846 2.1688 3.0144 4.1615

N = 4 (2000 points)
method \ η 0.5 1 1.5 2

this 0.80961 1.5383 2.1309 2.9188
algebraic 0.9066 1.7793 2.4941 3.4809

Table 1. Results with synthetic data: average 3D
error for different number of fisheye cameras (N)
and noise intensity (η).

3.2 Real Data

Here we present some results obtained us-
ing the Wadham college sequence available at
http://www.robots.ox.ac.uk/~vgg/data/data-mvi
ew.html. This sequence consists of 5 views taken with
a perspective camera, the projection matrices, and
3019 image points corresponding to 1331 scene points.
In particular:

• 1052 points are visible in 2 views;

• 215 points are visible in 3 views;

• 50 points are visible in 4 views;

• 14 points are visible in 5 views.

First, we have estimated the 1331 scene points using
standard triangulation for perspective cameras. Sec-
ond, we have computed the projections of these scene
points onto fisheye cameras with same orientation and
same center except for a translation along the opti-
cal axis in order to enlarge the spanned image area.
Figure 2 shows one image of the sequence and the cor-
responding projections onto the fisheye camera. The
data obtained so far will be used as “true” data. Third,
we have corrupted the true data as done in the previ-
ous subsection for the case of synthetic data with noise
intensity η = 1. Fourth, we have repeated the triangu-
lation using for each scene point the maximum number
of cameras where the point is visible.
The average 3D error obtained with the proposed

method is 3.3579, while the one obtained by minimiz-
ing the algebraic error is 5.1525.

4 Conclusion

We have introduced a geometric criterion for
multiple-view triangulation in a vision system with
fisheye cameras, which consists of determining the
scene point that minimizes the angles between the pro-
jections of the available image points and of the sought
point itself. For this problem we have proposed a so-
lution based on convex optimization, which consists of
solving an eigenvalue problem. The obtained results
indicate that the proposed criterion provides signifi-
cantly better estimates than algebraic criteria.
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Figure 2. Wadham college sequence: (a) one of
the 5 images; (b) projections on fisheye camera.
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