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Abstract

A robot cooperative manipulation system based on vi-
sual simultaneous localization and mapping is proposed
in this paper. A single camera mounted on each mo-
bile robot is used to observe unknown environments.
SURF algorithm is employed to extract features of the
environment and the target object. Three-dimensional
positions of the features are estimated according to
the visual information. The states of the robot and
matched features are updated using extended Kalman
filtering to reconstruct a consistent environment map
based on which path planning and robot navigation are
further accomplished. To carry out cooperative manip-
ulation tasks, a compliance control approach is adopted
to avoid dropping the object and ensure completing ma-
nipulation tasks successfully.

1 Introduction

Automated guided vehicles have been widely uti-
lized in industrial environments. Those vehicles move
around by sensing wires buried under the floor or re-
flective paints coated on the floor. Therefore, their ac-
tions are lack of autonomy and the fixed motion path
must be planned in advance. Existing robotic trans-
portation can be performed by pushing or pulling the
object [1]. Although easier to control, they are not
reliable because the object will experience frictional
force against the ground. When the gravity center
of the object is too high, the object is likely to be
dumped and damaged. To resolve this problem, Wang
et al. [2] utilized a 1-DOF manipulator to complete the
multi-robot cooperative manipulation and transporta-
tion task. Hirata et al. [3] considered the force of the
operator to complete the cooperative manipulation and
transportation task with robots. Chang et al. [4] com-
bined the visual intelligent space with the information
measured by the onboard cameras to design a visual
servo control approach to complete multi-robot coop-
erative manipulation and transportation tasks. To re-
solve drawbacks in existing approaches, a multi-robot
cooperative manipulation approach is integrated with
high autonomy, flexibility, and reliability. In particu-
lar, the proposed system employs onboard vision for lo-
calization and mapping that can be further integrated
to accomplish cooperative manipulation tasks success-
fully.

2 System Description

A robot cooperative manipulation system based on
visual simultaneous localization and mapping is pro-
posed in this paper. The system is composed of mo-
bile robots with onboard dual-arm manipulators, cam-

era and motor sensors, wireless communication units,
and personal computers. The system configuration is
shown in Fig. 1. A single camera mounted on the
mobile robot is used to capture environment informa-
tion sending to a personal computer via wireless net-
working. Real-time images are processed and control
commands are computed and then sent to the mobile
robots through the wireless network. When executing
the manipulation and transportation task, the motor
sensors mounted on each joint of the dual-arm manip-
ulator provide required information for the prupose of
implementating effective compliance control.

Robot 1Robot 2
Object

PC 1

PC 2
Router

Figure 1. System configuration.

Once the system is started, the SLAM algorithm is
initiated. The single camera mounted on each robot
is used to capture environment images to be processed
for SURF features. Therefore, data association can
be established by matching SURF features in sebse-
quent images. The SLAM results can thus be effec-
tively updated. Therefore, accurate robot position and
a consistent map can be made possible. Based on the
updated map, the mobile robots can be navigated to
follow a planned trajectory and perform object manip-
ulation and transportation tasks. When the object is
located, two mobile robots are controlled to grab the
object simultaneously. Cooperative manipulation and
transportation task can then be started. One robot is
considered as the follower, and its motion must com-
ply with the motion of the leader robot. According to
each joint motor state, the torque command for each
joint can be determined for the compliance motion of
the arm.

2.1 Feature detection and matching

SURF (Speeded Up Robust Features) algorithm [5]
based on Hessian matrix is utilized to detect and de-
scribe the enviroment features. Hessian matrix is de-
fined as follows:

H(x, y) =

[
Lxx(x, y) Lxy(x, y)
Lxy(x, y) Lyy(x, y)

]
(1)
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After the approximation mask is used, the convolution
results Lxx, Lyy, Lxy are substituted for Dxx, Dyy,
Dxy. The determinant of Hessian matrix can be ap-
proximated as

det(Happrox) = DxxDyy − (0.9Dxy)
2 (2)

2.2 Modeling and estimation

In this paper, extended Kalman filtering is utilized
to estimate the probability distribution of robot pose.
The onboard visual sensor is used to detect SURF fea-
tures. Feature matching in the sequence of real-time
images is performed for data association. These re-
sults are utilized to update robot pose in the world
frame. In this paper, the inverse depth parametriza-
tion method [6] is adopted to estimate the depth of
features by monocular vision. The uncertainty of the
robot pose estimate can be computed by the motion
model. The camera state is regarded as the robot state
as follows.

xC =
[
rT φT νT ωT

]T
(3)

where r represents the camera position, φ represents
the camera orientation, ν is the linear velocityof the
camera, and ω is the angular velocity of the camera.
The encoders mounted on the left and right wheels of
the mobile robot are used to estimate the robot pose
roughly. The estimation error is due to the instrument
specifications, uneven ground, or wheel slip. In the
motion model, the estimation error is treated as the
camera velocity noise as follows.

w =

[
wν

wω

]
=

[
aΔt
αΔt

]
(4)

where a and α is the camera linear and angular acceler-
ation caused by the camera velocity noise, respectively,
Δt is the sampling time, and wν and wω are the camera
velocity noise. Therefore, the motion model is defined
as

xCk
= f(xCk−1

,wk−1) (5)

where f(·) represents the state transition function.
The uncertainty of the sensor measurements can be

computed by the measurement model. In this research,
a single camera is used to observe the environment, and
the measurement vector is defined as

zk =
[
z1k

T z2k
T · · · zmk

T
]T

(6)

where m is the number of features captured by the
camera at time k and zik is the coordinates of feature
i in the current image frame. The feature coordinates
are obtained directly from image information. The per-
spective projection model is adopted as the measure-
ment model, which is defined as

ẑik = g(xk,nk) =

⎡
⎣ u0 + f

Chxi
Chzi

v0 + f
Chyi
Chzi

⎤
⎦ (7)

where g(·) represents the measurement function and n
is the measurement noise. The reason why the mea-
surement noise exists could be due to different environ-
ment conditions such as temperature, humidity, and

reflectivity. Futhermore, (u0, v0) represents the center
of image plane, f represents the focal lens, and Chxi ,
Chyi and

Chzi are components of the ray vector, which
are the feature coordinates with respect to the camera
frame.
In this research, a single camera is used to ob-

serve the environment. However, the distance between
the camera and the object can not be measured in
real time. Thus, the inverse depth parametrization
method is adopted to solve the problem, and the three-
dimension position is reperesented by the following six-
dimension state vector.

mi =
[
rxi ryi rzi

W θi
Wψi ρi

]T
(8)

where rxi , ryi and rzi are the camera position when the
feature i is detected for the first time, W θi represents
the camera azimuth with respect to the world frame,
that is the angle between the projection of the ray vec-
tor in the x-z plane and the x-axis, Wψi represents the
camera elevation with respect to the world frame, that
is the angle between the projection of the ray vector
in the x-z plane and the ray vector, and ρi represents
the inverse depth. When a new feature is detected, a
six-dimension state vector is generated to be added to
the EKF state. Furthermore, the inverse depth is pre-
dicted and updated by EKF until the value converges.
The azimuth and elevation is calculated as

[
W θi
Wψi

]
=

⎡
⎣ arctan(

W hzi
Whxi

)

arctan(
W hyi√

(Whxi
)2+(Whzi

)2
)

⎤
⎦ . (9)

The six-dimension state can be converted back to
the three-dimension position with respect to the world
frame by

[
Xi

Yi
Zi

]
=

[
rxi

ryi

rzi

]
+

1

ρi

⎡
⎣ c(W θi)c(

Wψi)
s(Wψi)

s(W θi)c(
Wψi)

⎤
⎦ . (10)

3 Path Planning and Navigation

Based on the positions of the robot, the target, and
the obstacles, a heuristic method can be developed
to perform path planning for the mobile robots. In
Fig. 2(a), the grid of the robot location is considered
as the start grid, which is denoted as the blue grid.
The red grid indicates the target grid. The black grids
indicate the obstacles. Take the start grid as the cur-
rent grid, and add it to the closed list that we do not
need to check it again. The adjacent grids of the cur-
rent grid are added to the open list that we need to
check, and the current grid is considered as their par-
ent grid. In the figure, each grid has a pointer that
points back to its parent grid. Then, the moving cost
F, G and H of each grid are determined as follows.
Specifically, the numbers within each grid from top to
bottom is the move cost G, H, and F, respectively. G
is the moving cost from the start grid to the consid-
ered grid, following the path generated to get there.
Each horizontal or vertical move is assigned a cost of
10, and each diagonal move is assigned a cost of 14.
H is the estimated moving cost to move from the con-
sidered grid to the target grid. H can be estimated in
a variety of ways. The method we adopt here is the
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Manhattan method, where the total number of grids
moved horizontally and vertically to reach the target
grid from the current grid is calculated, and then mul-
tiply the total number by 10. The diagonal move and
any obstacles that may be in the path are ignored, thus
the value of H is an estimation for the remaining dis-
tance, not the actual value. This is indeed a heuristic
method. Futhermore, the sum of move cost is defined
as F = G + H.

To continue the search, the lowest F score grid from
all those that are on the open list is chosen to do the
following steps. Drop the chosen grid from the open list
and add it to the closed list, and consider the chosen
grid as the current grid. Check all of the adjacent grids
of the current grid, and then three different conditions
need to be considered. Firstly, if the grid can not pass
or it has been on the closed list, ignore it. Secondly,
if the grid is not on the open list, then add it to the
open list. Moreover, the current grid is considered as
its parent grid, and calculate its F, G and H. Thirdly,
if the grid has been on the open list, then G score is
used to check if the new path is better or not. If it
is, then the current grid is considered as the parent
grid for this grid, and recalculate the moving cost F, G
and H for this grid. Refer to Fig. 2(b) to 2(e), we can
progressively observe the operation of the above steps.
The case when the target grid is added to the closed
list is shown in Fig. 2(e), which indicates that the path
is found and the above steps can now be terminated. If
failed to find the target grid and the open list is empty,
it appears that no path can be determined. Finally,
working backwards from the target grid, go from each
grid to its parent grid until the start grid is reached
to generate the deterimened path, which is shown in
Fig. 2(f).
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Figure 2. Path planning.

In order to obtain a smooth path for the mobile
robot, the grid centers along the determined path are

used to generate the Bezier curve as follows.

Γ(t) =

n∑
i=0

pi
n!

i!(n− i)! (1− t)
n−iti (11)

The formula can be expanded as

Γ(t) = p0(1 − t)n +
(
n
1

)
p1(1 − t)n−1t+ · · ·+ pnt

n

(12)
where pi denotes the grid centers along the path, t ∈
[0, 1].
In order to drive the mobile robot to move along the

planned path, a fixed gain controller is proposed. The
encoded errors are defined as{

eφ = φd − φz
ed =

√
(xd − rx)2 + (yd − ry)2 (13)

The fixed gain controller is proposed as follows.{
ωL = Kded +Kφeφ
ωR = Kded −Kφeφ

(14)

where ωL and ωR represent the angular velocities of
the left and right wheels, respectively.

4 Cooperative Manipulation

4.1 Grasping task

In order to implement the robot cooperative manip-
ulation and transportation task, the mobile robot is
controlled to move towards the object, and then con-
trol the manipulator to grab the object. Two features
are attached to the object, and their SURF descrip-
tions are determined a priori. Therefore, when the mo-
bile robot explores the environment, the system tries
to match them and reconstruct their position with re-
spect to the world frame. The reconstruction results
are then be used to guide the manipulator to grab the
object. In particular, desired joint positions are deter-
mined by the inverse kinematics. When the relative
pose between the mobile robot and the object reaches
the desired one, the manipulator is driven to grab the
object. The position of the end effector with respect
to the world frame can be determined as follows.⎡

⎢⎣
Wx
W y
W z
1

⎤
⎥⎦ = W

C TC
0 T

0
6T

⎡
⎢⎣

6x
6y
6z
1

⎤
⎥⎦ (15)

The end effector of the dual-arm mobile robot can thus
be controlled to reach the object. Upon the object
is reached, the gripper is closed to complete the grab
task.

4.2 Compliance control

In order to avoid dropping the object caused by mak-
ing turns when the robot cooperative manipulation and
transportation task executes, a compliance control ap-
proach is introduced to ensure completing the task suc-
cessfully. The manipulator can be modelled as follows.

τ = JT (Θ)KpxJ(Θ)δΘ (16)
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Therefore, the position controller is designed as

τp = JT (Θ)KpxJ(Θ)EΘ +KvĖΘ (17)

where EΘ = Θd − Θ and Θd are calculated as follows.
Firstly, the angular velocities of the left and the right
wheels are returned from the encoders mounted on the
wheels. Their difference is considered to determine the
elongation required for the manipulator. In this re-
search, the difference between the left and the right
wheel velocities is multiplied by 0.5 to obtain the elon-
gation in practice. When the manipulator is controlled
to reach the elongation, the original height and pose
of the end effector must be maintained. The desired
position of the end effector Xd is determined based on
above rules, which is used to further calculate the de-
sired position of each joint Θd based on the inverse
kinematics. The force error of the end effector is de-
fined as EF = Fd − F, where the measured force can
be computed as F = J−T (Θ)τ . The force controller is
thus designed as

τf = KpJ
T (Θ)EF . (18)

Furthermore, the proposed hybrid position and force
controller is as follows.

τ = τp + τf . (19)

5 Experiments

The proposed vision-based cooperative manipula-
tion approach was effectively implemented in a lab-
oratory environment with a leader-follower manipula-
tion task. According to the real-time updated maps,
the leader and follower robots move towards the tar-
get object until the grasping task is completed. Then
the two robots transport the object back to the ini-
tial position of the leader robot. The manipulation
scene when the mobile robots execute the cooperative
manipulation and transportation task is illustrated in
Fig. 3. The corresponding trajectories of the leader
and the follower robots can be seen in the left and
the right of Fig. 4, respectively. The blue, red, and
green lines indicate the trajectories of the robot, the
left arm, and the right arm, respectively. Based on the
results, the left arm of the leader robot and the right
arm of the follower robot appear to stretch out due to
compliance control when making the turn. One can
also observe unsmooth controlled trajectories that are
clearly caused by the uneven ground.

6 Conclusion

In the paper, SURF algorithm is employed to de-
tect environment features with a single onboard cam-
era. Matched features in the real-time observed im-
ages are used to establish correct data association thus
ensuring consistent mapping to be updated through
iterating EKF-SLAM algorithm. According to the up-
dated map, a path planning method and a compliance
controller are employed for performing the cooperative
manipulation task. According to the experiment re-
sults, the proposed system appears to be capable of
performing cooperative manipulation tasks effectively
in a real laboratory environment.

Figure 3. Manipulation scene where the leader
{left} is moving backward towards the left with
a turn with the follower.
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Figure 4. Trajectories of the leader {left} and the
follower {right} robots.
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