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Abstract

A motion estimation method for completing a video
with large and consecutive damage is introduced. It
is principally based on sparse matching and interpola-
tion. First, SIFT, which is robust to arbitrary motion,
is used to efficiently obtain sparse correspondences in
neighboring frames. To ensure these correspondences
are uniformly distributed across the image, a fast dense
point sampling method is applied. Then, a dense mo-
tion field is generated by interpolating the correspon-
dences. An efficient weighted explicit polynomial fitting
method is proposed to achieve spatially and temporally
coherent interpolation. In the experiment, quantitative
measurements were conducted to show the robustness
and effectiveness of the proposed method.

1 Introduction

Video completion repairs damaged or undesired re-
gions by filling them with the most suitable data, and
thus makes the whole video visually as realistic as pos-
sible. The damaged regions can be caused by water-
marks, logos, mud, undesired objects, raindrops ad-
hered to the lens, etc, which possibly occupy large
space and appear in a few consecutive frames. Com-
pleting these regions is challenging, since properly in-
terpolating large damaged regions spatially and tem-
porally is rather problematic.
Methods based on the motion field is usually used to

solve the completion problem. They assume the target
objects or regions to be removed are either static or
moving smoothly in consecutive frames. If the motion
trajectory can be correctly modeled, they can fill in the
damaged regions by copying the pixels along its trajec-
tory. However, in real videos, the whole environment
motion can be arbitrary and complex. It forces them
to focus on modeling the specific motion of the target
regions in specific perspective and to have strong con-
straints to simplify the environment motion. Zhang
et al.[12] and Jia et al.[3] limit the background motion
to be translation only. Jia et al.[4] and Patwardhan
et al.[8] assume the background to be static. Shiratori
et al.[9] and Liu et al.[6] uses an existing optical flow
method [1] to calculate the motion. Moreover, the ac-
curacy of optical flow calculated from damaged videos
poses another problem, since the existing methods of
optical flow assume the input video does not contain
any damaged regions.
Instead of modeling specific object motion, in this

paper, we focus on modeling more general environment
motion. We propose a method that utilizes sparse
matching and interpolation to estimate the environ-
ment motion. First, we employ SIFT [7], which is
robust to arbitrary motion, to find sparse correspon-
dences in neighboring frames. We remove the pixel cor-
respondences in the damaged regions, and thus avoid
their influences. We adopt a fast dense point sam-
pling method to ensure the correspondence is uni-

(a) Damaged video (b) Motion estimation (c) Completed video 

Figure 1. Video completion using the proposed
method. (a) Input video with large and consec-
utive damage. (b) Motion estimation using the
proposed method. (c) Video completion using
the motion.

formly distributed. Then, we generate a dense mo-
tion field by interpolating the sparse correspondences.
To achieve spatially and temporally coherent interpo-
lation, we propose a weighted explicit 2D polynomial
fitting method. Unlike 3D polynomial fitting, the pro-
posed 2D fitting has significantly efficient computa-
tional time. Finally, we finish the video completion by
copying the correspondences indicated by the motion
trajectory.
The proposed method is generally applicable to spa-

tially and temporally smooth motion, and is robust to
handle a severely damaged video. In our experiment, it
also achieved high computational efficiency which was
7 times faster than the optical flow based methods.
Fig. 1 shows the result of the proposed method.
The rest of the paper is organized as follows. Section

2 describes the sparse matching method. Section 3 ex-
plains the interpolation and completion method. Sec-
tion 4 shows quantitative experiments and applications
in motion estimation and video completion. Section 5
concludes the paper.

2 Robust Sparse Matching

Sparse Matching In video, the appearance of an
object can continuously change in terms of scale, posi-
tion, direction and perspective. [12, 4, 3, 8] make con-
straints to simplify the motion estimation. Although
[1, 5] are generally applicable to arbitrary motion, like
the methods by [9, 6], they suffer from the presence of
damaged regions (or the regions of undesired objects).
In the proposed method, first, the SIFT-based sparse

matching is used to overcome the changes of appear-
ance. To some extent, SIFT keypoints are invariant
to scale, position, rotation, and perspective transfor-
mation [7]. Second, in sparse pixel correspondences,
one pixel correspondence can be assumed to be inde-
pendent from the other correspondences. Therefore,
deleting the correspondences that represent the dam-
aged regions does not influence the correspondences of
non-damaged regions.

Well Distributed Correspondences The
proposed method uses sparse correspondence as an-
chor points for motion interpolation. It requires that
the sparse correspondences are distributed uniformly
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(a) Input and local matching areas 

(b) Distributed matching 

(c) Damaged area (d) Sparse motion 

(e) Dense motion 

Figure 2. The proposed motion estimation
method. (a) For 2 consecutive frames, sparse
matching is performed in each corresponding
squared windows. (b) The sparse matching re-
sults, which are well distributed across the image.
(c) The damaged area. (d) The motion (green
needles), which is calculated by the matching.
Motion correspondences in the damaged regions
are removed. (e) The interpolated dense motion
using the proposed weighted polynomial fitting.
Left image: represented by needles. Right image:
represented by color.

across the images, in such a way that in any area, there
exist sufficient anchor points for interpolation. How-
ever, the original SIFT algorithm tends to find cor-
respondences in highly textured regions and to ignore
others. To address this problem, we modify the match-
ing strategy of SIFT. As illustrated in Fig. 2 (a), we
do not apply the SIFT matching for the whole images,
but for small windows. As default, the size of each
window is 80 × 80 pixels and at least 3 matching pix-
els are found in each pair of windows. These small
windows across the whole image ensure the correspon-
dences are well distributed. For the two neighboring
windows, there are 30 pixels overlapping so that the
matching pixels in the window’s boundary is not ne-
glected. This matching strategy does not influence the
computational time significantly, since only half of a
window is matched twice. This strategy is inspired by
Tuytelaars [11].
Fig. 2 (b) shows an example of the sparse matching.

Mathematically, we denote all the N matching pixels
found between frame t1 and frame t2 as:

{(xk, yk, x′
k, y

′
k)}t1,t2 , k = 1, 2, · · · , N, (1)

where (xk, yk) is a pixel in frame t1 and (x′
k, y

′
k) is its

correspondence in frame t2. We apply the matching
between consecutive frames. Specifically, for a given
frame, the matching is found in both the previous and
the subsequent 5 frames.

Correspondence to Motion Estimating the
motion of corresponding pairs is straightforward. Re-
ferring to the notation in Eq. (1), for a corresponding
pair (x, y) and (x′, y′), the motion at (x, y) is denoted
as (δx, δy), which is equal to (x′ − x, y′ − y). Specifi-
cally, we can denote all the corresponding pairs of the
sparse motion between frame t1 and t2 as:

{(xk, yk, δxk, δyk)}t1,t2 , k = 1, 2, · · · , N. (2)

Figs. 2 (c)and(d) shows an example, where the sparse
motion is represented by short arrows. Erroneous
matching are directly removed.

3 Fast Space-time Motion Interpolation

Explicit Polynomial Fitting Having found the
sparse motion, we estimate the dense motion by doing
interpolation based on 2D explicit polynomial fitting.
First, we introduce the un-weighted 2D explicit poly-
nomial fitting, where an m degree 2D explicit polyno-
mial Pm can be expressed as:

Pm(x, y) =
∑

i+j=0,1,···,m
aijx

iyj , (3)

with {aij} the polynomial coefficients. We interpolate
the sparse motion in the x direction and the y direc-
tion separately. The interpolation, in the x direction
for example, implies finding the polynomial coefficients
{aij} that minimizes the squared sum fitting error:

∑
k=1,2,···,N

|δxk − Pm(xk, yk)|2, (4)

where {(xk, yk, δxk)}t1,t2 are found by the sparse
matching (Eq. (2)). We use the eigen-based method,
which is significantly fast, to solve Eq. (4). More de-
tails about the method can be found in [10].

Temporal Coherent Weighted Fitting The
fitting introduced in Eqs. (3) and (4) is temporally
incoherent, since each frame is fitted independently.
To make it temporally coherent, we propose an efficient
weighted 2D polynomial fitting method to fit multiple
frames simultaneously. Referring to the notation in
Eqs. (2) and (4), the weighted fitting means to find
the 2D polynomial Pm that minimizes the following
error function:

J∑
j=−J

(
W (tj − T )

N∑
k=1

|δxk,tj − Pm(xk,tj , yk,tj )|2
)
, (5)

where T is the center frame and {tj} are its previous
and subsequent J frames. W (·) is a weight function
which only depends on the temporal distance. W (·) is
expressed as:

W (Δt) =
1

(Δt)2
|J −Δt+ 1|

J
, (6)

where Δt = tj − T is the temporal distance between
the corresponding pairs, 1

(Δt)2 is called the speed term
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Table 1. Average completion error

Fast moving area Slowly moving area Static area 

Before completion 120.1 79.5 171.7 

Criminisi 2003 23.5 34.4 3.5 

Shiratori 2006 80.9 77.1 190.7 

The proposed method 13.2 20.7 3.5 

and |J−Δt+1|
J is called the coherent term. The speed

term converts the distance of the corresponding pairs
to average speed. The coherent term is a pyramid func-
tion, such that high weight is given to temporally close
matching pairs. Having P found from the fitting, the
motion at any place (x, y) to any temporal distance Δt
is calculated as:

(δx, δy)Δt = P (x, y)Δt = (P x(x, y)Δt, P y(x, y)Δt).
(7)

Considering the balance between accuracy and effi-
ciency, as default, we set J = 5 and m = 10. Fig. 2(e)
shows an example of the interpolated motion field.
Considerable efficiency can be achieved by the pro-

posed 2D fitting. Referring to Eq. (3), the num-
ber of coefficients {aij} to be solved is in O(m2)
complexity. If we use 3D polynomial, Pm(x, y, t) =∑

i+j+k=0,1,···,m aijkx
iyjtk, the number of coefficients

{aijk} is O(m3), which is considerably time consuming.

Video Completion We fill in the damaged
regions in the input video by utilizing the estimated
motion function. For a given frame with its motion
function P , the damaged regions are completed in a
pixel-by-pixel basis. For a given damaged pixel (x, y),
its correspondence (x′, y′) in other frames is found by:

(x′, y′) = (x+ P x(x, y)Δt, y + P y(x, y)Δt). (8)

According to Eq. (8) we can find one correspondence
in each of the neighboring frame. The spatially and
temporally closest undamaged correspondence is con-
sidered to be the most coherent and thus chosen to
be the best. Then, (x, y) is completed by copying the
best correspondence. In the final stage, for those pix-
els whose correspondence is in the damaged regions,
we adopt an image inpainting method [2] to complete
them. Fig. 1(c) shows the result of a completed video.

4 Experiments

Robustness Real videos captured by a car-
mounted camera were used to test the robustness of
the proposed motion estimation method. As shown in
Fig. 3, we randomly deleted one third of the frames
which makes the video seriously damaged. Since the
car was moving along the road, the motion of the fore-
ground should point to the end of the road, and the
nearer object should have larger motion. For compari-
son, two typical optical flow methods were also tested:
L-K-flow [1] which is used by Shiratori et al.[9] and
SIFT-flow [5] which is the state-of-art. As one can see,
only the proposed method estimated the motion more
robustly.

Accuracy To quantitatively demonstrate the ac-
curacy of the proposed repairing method, we used a

(a) L-K flow (b) SIFT flow (c) Proposed method 
Figure 3. Two experiments on robust motion es-
timation. Row 1 and 3: input video and motion
needles. Row 2 and 4: motion visualized by color.

Table 2. Average completion time per frame

Criminisi 2003 Shiratori 2006  The proposed method 

80s 145s 19s 

video without damage as the ground truth. For the in-
put, three regions are deliberately deleted: (1) regions
where the motion is fast, (2) regions where the mo-
tion is slow, and (3) static regions. Shiratori et al.[9],
method of Criminisi et al.[2] and the proposed method
were used to complete the damaged area separately.
Other methods [12, 4, 3, 8] have some motion con-
straints, which do not hold in this video and thus were
not compared. A selection of the results is shown in
Fig. 4. We quantitatively compared the 8 bit (R;G;B)
value differences between the ground truth and the re-
paired video. The average errors are listed in Table. 1,
where we can see the accuracy of the proposed method
outperformed all the other methods.

Efficiency Under the same hardware and envi-
ronment, the average time used to repair one frame
(640×480) using the proposed method and the two
other methods is listed in Table 2. As shown in the
table, the proposed method is significantly faster. The
proposed method is also generally applicable to any
large and consecutive video damage, as shown in Fig.
5.

5 Conclusion

We have proposed a sparse matching and interpola-
tion based motion estimation method for completing
video with large and consecutive damage. The SIFT
based matching is used to estimate the initial sparse
correspondences, followed by a dense motion interpo-
lation using a weighted 2D polynomial is applied. Lim-
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Figure 4. Accuracy comparison on video completion.

Input video Deleted area Criminisi 2003 Shiratori 2006 Proposed method 
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Figure 5. Applications of video completion.

itations of this method include the inaccuracy in cap-
turing sharp and small motion, which we consider to
be our future work.
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