
Global Binary Patterns: A Novel Shape Descriptor

Erdal Sivri and Sinan Kalkan
Dept. of Computer Engineering

Middle East Technical University, Turkey
{erdal, skalkan}@ceng.metu.edu.tr

Abstract

In this paper, we propose a novel shape descriptor,
called Global Binary Patterns (GBP), based on inter-
preting intensity values along a direction in an image
as binary numbers, converting these binary numbers to
their decimal values and concatenating these decimal
values as the elements of a vector that is the GBP rep-
resentation of the shape. Comparing with some widely-
used state-of-the-art methods in the literature, we show
that GBP is very fast and its performance on several
widely-used databases is comparable or better.

1 Introduction
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Figure 1. GBP computation. (a) The original bi-
nary image. (b) After rows are multiplied by:
(2−j2 2−j1 20 2−1 2−2). (c) After each row
is summed horizontally. (d) After columns are
multiplied by: (2−j1 20 2−1 2−2 2−3). (e) Af-
ter columns are summed vertically. (f) Resulting
GBPhv descriptor.

In this article, we propose a novel shape descrip-
tor called “Global Binary Patterns” (GBP), which
is a computationally simple algorithm that describes
shapes using projections of binary pixel values along
horizontal, vertical, diagonal and principal directions
(see Fig. 1 for an illustration) - in fact, GBP can be
defined for any direction. In this method, sequences
of binary values, i.e., bits, are interpreted as a sin-
gle large binary number and converted to a decimal
value. This idea is similar to the one adopted by the
popular texture descriptor called Local Binary Pat-
terns (LBP) [14] but different in that GBPs are global
and defined along directions. Our comparison on sev-
eral databases reveals that this simple descriptor per-
forms comparatively against several widely used meth-

ods (LBP, Shape Context (SC) [1], Histogram of Ori-
ented Gradients (HOG) [5], Zernike Moments (ZM)
[17] and Fourier Descriptors (FD) [18]).

1.1 Related Studies and Background

Shape representation and description methods are
generally analyzed in two broad categories: contour-
based and region-based methods (see, e.g., [3, 19]).
Some shapes are represented better with a region-
based descriptor while some are better suited to a
contour-based description. Therefore, in this article,
we compare GBP against methods from both cate-
gories.

Popular contour-based methods include shape sig-
natures, curvature scale space, Fourier descriptors and
shape context. Shape signatures describe the shape as a
one-dimensional feature vector constructed from shape
boundary, using central distance, tangent angle, cumu-
lative angle, curvature, complex coordinates and cen-
troid distance [6]. Curvature scale space descriptors,
on the other hand, utilize scale space representation
of the shape contour to describe shapes [12]. Another
method, Fourier descriptors, uses the frequency ampli-
tudes of the Fourier Transform of the boundary pixels.
Shape Context, represents a shape by a histogram of
relative spatial configurations of pixels.

Popular region-based descriptors include geometric
moments, shape matrix, convex hull and axis-based de-
scriptors. Geometric moments [10] are based on the
idea that an image can be represented as a set of
moments, where a moment of an image is a particu-
lar weighted average of a function of pixel intensities.
Orthogonal moments, Zernike moments, Legendre mo-
ments, rotational moments and complex moments are
some of the well-known image moments used in the lit-
erature [4, 7, 17]. Shape matrix is another region-based
descriptor [9], which transforms the shape into a ma-
trix by polar quantization. In contrast to raster sam-
pling, instead of a regular square grid, a polar raster
of concentric circles are used to describe the shape.
Convex hull descriptors [8] represent the shape as a
string of concavities or concavity tree. Concavities of
the shape are computed using the convex hull of the
shape, which is defined to be the smallest convex re-
gion which covers the shape. The difference between
the convex hull and region is known as the concavity of
the shape. Finally, axis-based models [2] capture the
interior region of the shape as a graph and are gener-
ally insensitive to articulations and occlusions.

Although they are not shape-based methods, we
compare our GBP descriptor against LBP and HOG
since they are widely-used simple texture-based de-
scriptors. HOG descriptor is a histogram of gradient
occurrences in localized grid cells. HOG has been suc-
cessfully applied in several tracking applications, espe-
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Figure 2. Illustration of the projection of a pixel
onto a line that passes through the pixel po with
orientation θ.

cially that of humans [5]. LBP, albeit computationally
simple, is a powerful texture descriptor [14]. The basic
idea in LBP is to compute a bit string in local windows
by thresholding pixels in the window with respect to
the center pixel. The bit string is interpreted as a
binary number and converted to a decimal number,
which is used to build a histogram.

2 Global Binary Patterns (GBP)

GBP creates a set of bit strings for any direction of a
binary image and interprets these bit strings as binary
numbers to build a global descriptor (see Fig. 1). The
idea of extracting bit strings from intensity values is
also essential in LBP; the difference is that LBP ex-
tracts these bit strings in local windows whereas GBP
extracts them on global directed lines. In its simplest
form, GBP of a row, r, of a binary image I is defined
as follows:

GBPh(r) =

C−chm∑
c=0

I(r, c + c
h
m)2

−c
+

chm∑
c=0

I(r, c
h
m − c)2

−jc
, (1)

where chm is the center of mass along the horizontal
direction, and C is the number of columns in I. GBPh
computes GBP along the horizontal direction. Simi-
larly, GBP along the vertical direction, denoted GBPv,
is defined as follows:

GBPv(c) =

R−cvm∑
r=0

I(r + c
v
m, c)2

−r
+

cvm∑
r=0

I(c
v
m − r, c)2

−jr
, (2)

where cvm is the center of mass along the vertical di-
rection and R is the number of rows in I. See Fig. 1
for an illustration of GBP computation.
Although GBPh and GBPv are defined along hori-

zontal and vertical directions, GBP can be constructed
along any arbitrary direction, which may effect (as in-
vestigated in Section 3) the performance of the descrip-
tor. To this end, we extend the definitions in Eq. 1
and 2 to incorporate projection along an arbitrary di-
rection with orientation θ (see Fig. 2). Let lpo

θ be the
line, with orientation θ, that passes through po, which
is the center of mass of image I along θ. GBPθ for
image I is then defined as follows:

GBPθ(k) =
∑

p∈I−
δ (Lγ − k) I(p)2

−jdp
+

∑
p∈I+

δ (Lγ − k) I(p)2
−dp

,
(3)

where I− and I+ are the set of pixels on the negative
and positive side of the center of mass respectively, dp

is the point-to-line distance between the pixel p and

GBP descriptor
20 40 60 80

GBP descriptor
20 40 60 80

Figure 3. Sample images from the MPEG-7
database and the corresponding GBP descriptors
(brighter intensities indicate higher values). De-
scriptors are constructed by concatenating GBPs
in Eqs. 5, 7 and 9. Left: images from a single cat-
egory. Right: images from different categories.

the line lpo

θ , xp is the projection of the pixel p onto the
line lpo

θ , L is the desired length of the GBPθ descriptor
(L is taken to be 32 for the experiments conducted

in this paper), γ is xp−min(xpij )
max(xpij )−min(xpij )

, and δ(·) is the
Kronecker delta defined as:

δ(x) =

{
1 if x = 0,

0 otherwise.
(4)

Using Eq. 3, it is possible to use any number of pro-
jections to form the GBP descriptor. Analysis in this
study is performed using combinations of horizontal,
vertical, diagonal and principal directions defined as
follows.

GBPh(I) = GBP0(I), (5)

GBPh′ (I) = GBP
Rh
0 (I), (6)

GBPv(I) = GBP−90(I), (7)

GBPv′ (I) = GBP
Rv
−90(I), (8)

GBPd(I) = GBP−45(I), (9)

GBPp(I) = GBPφ(I), (10)

where Rh and Rv denote the reverse of the image
in horizontal and vertical directions, φ is the orienta-
tion of the principal axis of the shape, which is com-
puted using Principal Component Analysis (PCA) [15].
Based on the nature of the problem, different GBPs as
defined in Eqs. 5, 6, 7, 8, 9 and 10 can be concatenated
as a single GBP descriptor.

Fig. 3 displays GBP descriptors for sample images
from the MPEG-7 database [11]. GBP descriptors
are constructed using horizontal, vertical and diagonal
projections: GBPh ⊕GBPv ⊕GBPd (⊕ concatenates
two vectors). As seen from the figure, descriptors ex-
tracted from similar shapes form a more uniform dis-
tribution compared to those extracted from dissimilar
shapes.

Comparison between GBP descriptors is performed
using the so-called Canberra distance: d(a, b) =
∑|a|

i=1
|ai−bi|
|ai+bi| where a and b are the GBP descriptor

vectors extracted from two images.

3 Evaluation and Results

We evaluate GBP on several widely-used databases,
and compare GBP’s accuracy and running time per-
formances with those of some widely-used descriptors
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such as SC, HOG, LBP and FD. We chose these meth-
ods for comparison because they are good repre-
sentatives of shape descriptors widely used in
the literature. Databases used in the experiments
are the “MPEG-7 CE Shape-1 Part-B database” [11],
the “Brown University Kimia databases” [16], and the
“Columbia object image library (Coil-100) database”
[13] 1.
In the literature, evaluation on the MPEG-7

database is performed using the so-called Bull’s Eye
score, in which every shape is compared to all other
shapes and among the top 40 similar results, the ra-
tio of correct matches to the highest possible number
of matches are reported. Kimia databases use a score
called TopRank, in which every shape is compared to
all other shapes and the number of correctly classified
N nearest neighbors for each query image is reported
in a tabular form. Finally, results on the Coil-100
database are reported using the accuracy measure.
We first analyze the effect of GBP’s parameters on

its accuracy. GBP can be composed of combinations
of several projections listed in Eqs. 5, 6, 7, 8, 9
and 10. Evaluations in this study are performed us-
ing the following GBP descriptors: GBPd given in
Eq. 9, GBPp given in Eq. 10, and GBPhv and GBPhv′

defined as follows: GBPhv = GBPh ⊕ GBPv and
GBPhv′ = GBPh⊕GBPv⊕GBPh′⊕GBPv′ . We have
also tested whether extracting GBP from equally di-
vided grids performs better. For this, we have divided
the test images into n × n many equally sized grids,
where we picked up n as 1, 2 and 4. Our evaluation
in the MPEG-7, Kimia-99, Coil-100 and Kimia-216
databases (detailed results not provided here for the
sake of space) revealed that GBPhv′ performed best
(in terms of the metrics used for each database (see
above)), regardless of the number of grids the image is
divided into.
In Fig. 4, we present the retrieval results of all meth-

ods using Receiver Operating Characteristics (ROC)
curves. As the figure suggests, GBP outperforms other
methods on the MPEG-7 database and performs com-
parable to other methods on other databases (see also
Fig. 5). We observe that GBP performs comparable
with ZM on shape-based databases, and on par or bet-
ter than HOG on the texture-based Coil-100 database.
Running time comparisons are performed on Kimia-

216 (arbitrarily chosen) by running each method (with
their best parameter settings) in Matlab on the same
desktop machine. For better evaluation, running times
are recorded for feature extraction (E) and matching
(M) separately. The M phase, includes an all-to-all
matching, which uses distance metrics specific to each
method. In Table 2, we see that the E phase of GBP
has the best running time performance (0.12s), and the
M phase of SC has the worst performance (27520.04s).

4 Conclusion and Future Work

In this paper, we proposed a novel shape descrip-
tor named Global Binary Patterns, which is similar
to the popular texture descriptor, LBP. Running-time
and image-retrieval performances of the method are
presented in comparison with the well-known widely-
used descriptors such as SC, HOG, LBP, FD and ZM

1Images are resized to 32× 32 for all evaluations.
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(c) Kimia-216 database
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(d) Coil-100 database
Figure 4. ROC Curves for all methods with best
parameter settings. For the sake of visibility, only
tpr > 0.4 is shown without loss of any informa-
tion.

on several widely-used databases. We report that GBP
stands out as a promising feature descriptor since it is
fast, simple and provides comparable performance to
the methods analyzed in the article. For these reasons,

171



Table 1. Scores of all methods with best param-
eter settings.

(a) MPEG-7 database

Method Bull’s Eye

GBP 59.38
SC 58.97
HOG 57.38
ZNK 54.75
LBP 50.38
FD 28.55

(b) Coil-100 database

Method Accuracy

HOG 99.40
SC 94.20
LBP 94.00
GBP 90.60
ZNK 89.80
FD 47.20

(c) Kimia-99 database TopRank scores

Method 1st 2nd 3rd 4th 5th 6th 7th 8th

SC 98 93 88 80 78 82 73 77
HOG 96 88 89 87 80 70 69 64
GBP 95 85 84 79 76 73 68 66
ZNK 90 85 86 81 75 71 63 67
LBP 97 85 85 75 72 65 61 57
FD 72 61 59 54 41 37 35 35

(d) Kimia-216 database TopRank scores

Method 1st 2nd 3rd 4th 5th 6th 7th 8th

HOG 209 205 201 195 194 188 180 172
SC 206 203 190 188 181 176 170 168
GBP 205 192 183 179 179 163 163 163
ZNK 197 188 182 170 164 154 148 148
LBP 199 191 179 169 158 152 153 147
FD 156 139 128 125 107 103 87 86

Table 2. Running times (sec).
Method Extraction Matching

SC 26.91 27520.04
HOG 0.57 6.74
LBP 18.07 6.57
FD 1.52 5.91
ZNK 1.14 4.19
GBP 0.12 5.95

Query
Similar Images

GBP SC HOG

0.13 0.14 0.14 5392 6754 7538 0.14 0.17 0.17

0.07 0.15 0.16 7352 7740 8588 0.05 0.06 0.08

0.21 0.32 0.36 5764 15946 23694 0.08 0.34 0.36

0.35 0.40 0.41 7672 15886 16600 0.32 0.33 0.34

0.45 0.48 0.50 8686 26602 29218 0.41 0.42 0.45

0.09 0.11 0.11 4988 6894 8132 0.16 0.16 0.16

Query
Similar Images

ZNK LBP FD

371.39 461.14 500.61 0.02 0.02 0.02 0.03 0.10 0.10

150.03 300.81 350.47 0.02 0.02 0.02 0.11 0.14 0.14

21.82 783.66 1724.53 0.01 0.02 0.02 0.01 0.05 0.06

6750.21 6805.45 6921.27 0.09 0.10 0.10 0.05 0.07 0.09

5014.93 6037.12 6335.87 0.04 0.04 0.04 0.08 0.09 0.10

225.72 237.22 301.14 0.03 0.03 0.03 0.10 0.11 0.13

Figure 5. Query results for randomly selected im-
ages from the MPEG-7 database.

GBP is especially suitable for real-time applications or
quick development requirements.

Acknowledgement

This work is partially funded by TUBITAK Project
No 7110393.

References

[1] Serge Belongie, Greg Mori, and Jitendra Malik. Match-
ing with shape contexts. In Proceedings of the IEEE
Workshop on Content-based access of Image and Video-
Libraries, 2000.

[2] H. Blum. Biological shape and visual science. Journal
of Theoretical Biology, 38(2):205–287, 1973.

[3] M. Bober. Mpeg-7 visual shape descriptors. IEEE Tr.
on Circuits and Systems, 1(6):716–719, 2001.

[4] J. F. Boyce and W. J. Hossack. Moment invariants
for pattern recognition. Pattern Recognition Letters,
1(5-6):451–456, 1983.

[5] N. Dalal and B. Triggs. Histograms of oriented gradi-
ents for human detection. In CVPR, 2005.

[6] E. R. Davies. Machine Vision: Theory, Algorithms,
Practicalities. Morgan Kaufmann Publishers Inc., 2004.

[7] V. P. Dinesh Kumar and T. Tessamma. Performance
study of an improved legendre moment descriptor as
region-based shape descriptor. Pattern Recognition
and Image Analysis, 18(1):23–29, 2008.

[8] Rafael C. Gonzalez and Richard E. Woods. Digital
Image Processing. Addison-Wesley Longman Publish-
ing Co., Inc., 2nd edition, 2001.

[9] A. Goshtasby. Description and discrimination of pla-
nar shapes using shape matrices. PAMI, 7(6):738–743,
1985.

[10] M. K. Hu. Visual pattern recognition by moment in-
variants. IRE T. on Information Theory, IT-8:179–
187, 1962.

[11] L. J. Latecki, R. Lakämper, and U. Eckhardt. Shape
descriptors for non-rigid shapes with a single closed
contour. In CVPR, 2000.

[12] F. Mokhtarian and A. K. Mackworth. A theory of
multiscale, curvature-based shape representation for
planar curves. PAMI, 14(8):789–805, 1992.

[13] S. Nene, S. Nayar, and H. Murase. Columbia object
image library (coil-100). Technical report, Columbia
University, 1996.

[14] T. Ojala, M. Pietikinen, and D. Harwood. A com-
parative study of texture measures with classification
based on featured distributions. Pattern recognition,
29(1):51–59, 1996.

[15] K. Pearson. On lines and planes of closest fit to sys-
tems of points in space. Philosophical Magazine, 2(6):559–
572, 1901.

[16] T. B. Sebastian, P. N. Klein, and B. B. Kimia. Recog-
nition of shapes by editing shock graphs. In ICCV,
2001.

[17] C. H. Teh and R. T. Chin. On image analysis by the
methods of moments. PAMI, 10(4):496–513, 1988.

[18] D. Zhang and G. Lu. A comparative study of fourier
descriptors for shape representation and retrieval. In
ACCV, pages 646–651, 2002.

[19] D. Zhang and G. Lu. Review of shape representa-
tion and description techniques. Pattern Recognition,
37(1):1–19, 2004.

172


