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Abstract

Spatial Pyramid Matching (SPM) has been a major
breakthrough in the field of object and scene recogni-
tion. Using this approach, an image is divided into
2l × 2l disjoint sub-windows for each pyramid level l.
However, the disjoint arrangement of the sub-windows
can be too restrictive, especially when we consider that
each window may benefit from broader context. In-
spired by human habit in viewing an image, we intro-
duced two overlapping spatial windows in this paper:
rectangular overlapping windows (OWSPM) and circu-
lar overlapping windows (CWSPM). We found that the
introduction of overlapping spatial window allows us
to achieve better performances in Caltech 101, Caltech
256 and 15-Scene databases (up to 3.68% compared to
traditional SPM using ScSPM algorithm). Further-
more, it enables us to bypass the 0th and 1st layer and
use the 2nd pyramid layer directly for recognition, con-
siderably cutting memory consumption while achiev-
ing better recognition rate than traditional SPM at the
same time.

1 Introduction

Spatial Pyramid Matching [1] was proposed as an
extension for the traditional bag-of-features (BoF) ap-
proach to incorporate spatial configuration of an im-
age. Each image is now described using not only
one histogram but a concatenation of multiple his-
tograms using the concept of spatial pyramid. The
lth (l ∈ {0, 1, ..., L}) level of the pyramid is formed by
dividing the image I into 2l × 2l disjoint sub-windows
(L = 2 is usually used by most researchers). A his-
togram is extracted from each sub-window to be con-
catenated with histograms from other sub-windows.
This image representation may grow into a very large
vector as more layers are considered.

We propose an extension to this traditional SPM
approach by introducing two types of overlapping win-
dows (rectangular and circular) to replace the disjoint
sub-windows. The idea behind this concept is that in
human perception, it is very rare for us to examine an
image or a scene in a disjoint way. More often than
not, we examine an image using regions that are likely
to be overlapping with each other. In addition, by
utilizing overlapping sub-windows, it is more probable
that they will enclose larger part of the object to be
observed. This will lead to increased discriminability
of the image representation. The proposed concept is
tested using variety of popular databases (Caltech 101,
Caltech 256, and 15-Scene) using ScSPM framework
developed in [2] as the baseline.

Our experiments have shown that the introduction
of overlapping spatial windows improves the recogni-

tion rate of all datasets considerably (up to 3.68%).
Furthermore, as we will demonstrate in this paper, the
introduction of overlapping spatial windows improves
the performance of the l = 2 layer significantly, ex-
ceeding the performance of traditional SPM with three
pyramid layers. This enables us to bypass the first two
layers entirely and use only the l = 2 layer, cutting
memory cost by 24%.
Our contributions are thus summarized in three

points: (1) introducing OWSPM and finding the op-
timal overlap size to increase the recognition rate of
traditional SPM, (2) introduction of overlapping cir-
cular window SPM (CWSPM), and (3) using CWSPM
to bypass the first two layers of traditional SPM. The
rest of the paper is organized as follows: Sec. 2 talks
about some related works. Sec. 3 presents the frame-
work of our proposed method. Sec. 4 discusses on the
implementation of the system in our experiments, fol-
lowed by experiment results in Sec. 5. Finally, Sec. 6
concludes our paper.

2 Related Works

In the past decade, BoF based approach has been
a popular approach in object recognition research.
Lazebnik et al. [1] proposed to extend the BoF model
by including the spatial configurations of local patches.
The addition of spatial pyramid representation allows
spatial configurations to be captured in the image rep-
resentation. Because of its success, it has been adopted
in many subsequent works as a major block of recog-
nition systems.
As research on object recognition progressed, quan-

tization of local patch descriptors into discrete vocabu-
lary has shifted from hard-assignment (where one local
patch is assigned to one vocabulary) to soft-assignment
(a local patch is now assigned as to several vocabu-
laries by a membership indicator) [3, 4]. Setting the
coefficients in the soft-assignment to have only a few
non-zero components (sparse-coding) proves to be very
powerful when paired with SPM. The combination of
the two allows the classifier to be learned using a simple
linear SVM, as opposed to the costly non-linear SVM
from the traditional SPM approach. This concept is
called ScSPM [2], and it has since been an integral
part of several cutting edge object and scene recogni-
tion approach [5, 6].
The usage of disjoint sub-window in SPM, however,

is challenged only by few researchers. Ergul and Ar-
ica [7] used half-size overlapping spatial window for
scene recognition, but retained the window size for
each pyramid level, leading to the increased number
of sub-blocks, leading to the increase of memory cost
(storage of image representations tripled as 59 sub-
blocks are now used in computing the features, com-
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pared to 21 of normal SPM when L = 2). Yan et al.
[8] used dense spatial sampling to replace SPM with
variable sub-block size. While this dense spatial sam-
pling led to the usage of overlapping spatial window,
its memory complexity increased considerably as many
more blocks are involved.
To the extent of our knowledge, our work is the first

to propose the usage of overlapping spatial window
while retaining the same storage and computational
cost.

3 Overlapping Spatial Pyramid Matching

3.1 Feature Pooling by OWSPM

Let X be a collection of local patch descriptors in a
D-dimensional feature space consisting of M descrip-
tors, i.e. X = [x1,x2,x3, ...,xM ]T ∈ R

M×D. Sc-
SPM learns a codebook dictionary V ∈ R

D×K and a
membership indicators of each local patch descriptor
U = [u1,u2, ...,uM ]T by optimizing the following ob-
jective function:

min
U,V

M∑

m=1

‖xm − umV‖2 + λ|um|

subject to ‖vk‖ ≤ 1, ∀k = 1, 2, ...,K.

(1)

By putting an additional L1-norm regularization on
um, we enforce um to have a small number of non-
zero elements, thus forcing coefficients in um to have
few non-zero elements. Unit L2-norm constraint on
‖vk‖ is generally applied to avoid trivial solutions. The
codebook V is normally designed to be overcomplete by
setting K > D. The optimizing process for Eq. 1 can
be found in [9].

Instead of pooling the local patches by averaging,
ScSPM proposed the usage of max-pooling approach
to calculate the image representation. We calculate z,
the feature representation of a particular sub-window,
using the max-pooling approach by:

zj = max{|u1j |, |u2j |, ..., |uMj |} (2)

In this equation, zj denotes the j-th element of z,
while umj denotes the j-th element of um. Using the
traditional SPM approach with L = 2, each level of the
pyramid is divided into 2l × 2l disjoint sub-windows
with l = {0, 1, ..., L}. Pooling method is then ap-

plied to each sub-window, producing
∑L

l=1 4
l vectors

z. These vectors are then concatenated into a single
feature vector as the representation of image I.

We propose the use of overlapping spatial window
for all layers with l > 0 (since we don’t need to apply
overlapping windows when l = 0 as it correspond to
the full image I). The overlapping windows are imple-
mented without changing the number of spatial win-
dow used to represent the image (in contrast to [7, 8])
but rather by changing the size of the sub-windows in
each pyramid level. Let θ to be the fraction of overlap
between two adjacent sub-window (we define adjacency
in left/right and top/bottom fashion) compared to the
area of a single window. Then, each window in pyramid
level l will have a size of ( image height

2l(1−θ)+θ
) × ( image width

2l(1−θ)+θ
).

Max-pooling method is applied to each sub-window,

Figure 1. Sub-window division of (a) traditional
SPM, (b) OWSPM with its overlapping rectan-
gular windows, and (c) CWSPM with its overlap-
ping circular windows. In this illustration, l and
θ is set to 1 and 0.4 respectively and only the top
two sub-windows are shown for clarity.

and the resulting vectors are concatenated to produce
the feature vector.

The usage of overlapping sub-windows takes its in-
spiration from how we as a human being gather infor-
mation from what we see. We localize our focus on
some interest region, but very rarely that there will
be only a single interest region. Additionally, when
multiple interest regions are considered, most of these
regions will be overlapping with each other. How-
ever, traditional SPM method divides the spatial re-
gion disjointly, disregarding the potential benefits from
this aspect. A further confusion may arise when dis-
joint windows are applied when we consider the case
where an object is shared equally by two sub-windows.
In this case, the two sub-windows may not represent
the object effectively. By introducing overlapping sub-
windows, we will be able to enclose more of the object
which in turn increases the discriminability of image
representation.

3.2 Circular Window SPM

We extend the concept further by replacing the pool-
ing mechanism of OWSPM. The traditional and over-
lapping SPM divides the image into rectangular sub-
windows with proportional sizes. Patches descriptors
are pooled together based on their membership of sub-
windows. As OWSPM aims to achieve a better cover-
age of context obtained by the sub-windows, it is in-
tuitive that the rectangular shape will not be optimal
for our purposes.

If we consider the rectangle’s center of gravity as the
focus point of a sub-window, then the farthest point
that is being pooled by it is located at the rectangle’s
corner. If we want to include every patches within that
distance from the focus point, a circular window is the
obvious choice. By using a circular spatial window, the
descriptive power of the image representation are im-
proved, since: (1) the context are described completely
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Table 1. Recognition rate of OWSPM under dif-
ferent θ values

15 Scene Caltech 101 Caltech 101
θ 100 train 15 train 30 train
0 80.28% 66.28% 72.46%
0.1 81.06% 66.74% 73.73%
0.2 81.19% 67.44% 73.73%
0.3 81.54% 67.57% 73.72%
0.4 81.09 % 67.49% 73.60%
0.5 80.76% 66.78% 73.72%

in every direction, and (2) circular windows will receive
the same benefit with OWSPM as it require the sub-
windows to overlap with each other.
We construct the circular windows by first defin-

ing the regular sub-windows of SPM. Circumcircles
are constructed over each of this rectangular sub-
window, creating circular windows with radius of
0.5 × (window height2 + window width2) centered at
the rectangle’s center of gravity. Note that we can also
define the rectangles to be overlapping with each other
(as in OWSPM) to modify the overlap value of the
circles.

4 Experiments

We implemented both OWSPM and CWSPM and
use them to train the datasets using ScSPM as a bench-
mark. Three datasets are used in our experiments: 15
Scene, Caltech 101 and Caltech 256. Our implementa-
tions utilized only the SIFT descriptor, extracted from
16 × 16 pixel patches sampled regularly using a grid
with 8 pixels spacing. For all database, we set code-
book size K as 1024. All experiments are repeated 10
times and we report the mean of the recognition rates
in this paper. These settings are similar to the settings
used in [2] for direct comparison.
To allow concise writing, we introduce the notation

of pyramid configurations P throughout this paper to
denote the layers used in a particular experiment. In
example, setting P = {0, 1, 2} means that we are using
l = 0, l = 1, and l = 2 layers for our image representa-
tion (the layers with 1×1, 2×2, and 4×4 sub-windows
respectively). We use the subscript o and c to indicate
whether the layers is set using the overlapping rectan-
gle sub-windows or the overlapping circle sub-windows,
respectively. The absence of a subscript means that the
layer follows traditional SPM definition.

5 Results

5.1 Testing of OWSPM and CWSPM

OWSPM and CWSPM are first tested using 15
Scene and Caltech 101 database to find the optimal
value for θ. We tested both algorithms using θ =
{0, 0.1, 0.2, 0.3, 0.4, 0.5} and show the results in Table
1 and Table 2. For OWSPM, θ value of 0.3 allows us
to get the optimal result for all dataset under differ-
ent number of training images (θ = 0.2 produces the
best performance for 30 training image Caltech 101,
but only by 0.01% compared to when θ = 0.3). The
CWSPM exhibits its peak in when θ is around 0 to
0.1 (note that setting θ = 0 in CWSPM will still lead

Table 2. Recognition rate of CWSPM under dif-
ferent θ values

15 Scene Caltech 101 Caltech 101
θ 100 train 15 train 30 train
0 81.62% 67.68% 74.14%
0.1 81.52% 67.84% 73.91%
0.2 81.06% 66.70% 73.83%
0.3 81.46% 66.92% 72.63%
0.4 80.84% 66.46% 71.85%
0.5 80.06% 64.95% 71.03%

Table 3. Recognition rate of ScSPM, OWSPM
and CWSPM on 15-Scene.

Algorithms 100 training image
ScSPM [2] 80.28%
OWSPM 81.54%
CWSPM 81.62%

to overlapping sub-windows). In our paper, we select
θ = 0.3 and θ = 0 for OWSPM and CWSPM, respec-
tively.

Using the obtained θ value, we compared the per-
formance of ScSPM under three different image repre-
sentation schemes: (1) traditional SPM, (2) OWSPM,
and (3) CWSPM. Tables 3, 4, 5 shows the result for 15
Scene, Caltech 101, and Caltech 256 datasets, respec-
tively.

As shown in the tables above, it is clear that the us-
age of OWSPM and CWSPM outperforms the tradi-
tional SPM (up to 3.68%) in its recognition rate. This
is quite a significant increase considering that the effort
on implementing these changes can be done with simi-
lar computational cost as the traditional SPM. In addi-
tion, CWSPM consistently outperforms OWSPM, even
though only by a slight margin. These results have
confirmed our claims that using disjoint sub-windows
in spatial pyramid matching omits important informa-
tion. It also confirm our hypothesis that including all
equidistant local patches with respect to the rectan-
gle’s center of gravity captures the complete context
surrounding the sub-windows. In addition, as ScSPM
has been used as a basis for many state-of-the-art ap-
proach in image recognition, we strongly believe that
the adoption of overlapping windows (be it OWSPM
or CWSPM) may improve the results further.

5.2 The performance of l = 2 layer under
OWSPM and CWSPM

A closer inspection of performance coming from each
layer of ScSPM, OWSPM, and CWSPM provide us
with another important discovery. In the traditional
SPM with L = 2 (P = {0, 1, 2}), we are using 21
sub-windows to represent each image. After coding
of local patches and max-pooling, we will end up with
21K dimensional vector for each image. That is, when

Table 4. Recognition rate of ScSPM, OWSPM
and CWSPM on Caltech 101.

Algorithms 15 train 30 train
ScSPM [2] 67.00% 73.20%
OWSPM 67.57% 73.72%
CWSPM 67.68% 74.14%
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Table 5. Recognition rate of ScSPM, OWSPM
and CWSPM on Caltech 256.

Algorithms 15 train 30 train 45 train 60 train
ScSPM [2] 27.73% 34.02% 37.46% 40.14%
OWSPM 31.31% 36.57% 39.15% 41.27%
CWSPM 31.41% 36.59% 39.32% 41.50%

Table 6. Average recognition rate of Caltech 101
database with 30 training images for various spa-
tial pyramid configurations.

Pyramid Configurations Recognition Rate
P2 = {2} 70.13%
P2o = {2o} 73.19%
P2c = {2c} 73.48%
Pnw = {0, 1, 2} 72.46%
Pow = {0, 1o, 2o} 73.72%
Pcw = {0, 1c, 2c} 74.14%

K = 1024 we will have 21504 dimensional vector for
each image. Calculation of such data could be very
costly both in terms of training complexity and mem-
ory complexity (using Caltech 256 with 60 training im-
ages will cost around 2.5 GB of memory to simply store
the training data). A reduction on the dimensionality
of image representation may benefit us greatly.
By inspecting each layer and their possible combi-

nations, we discover that the usage of l = 2 layer pro-
vides us with a comparable result to the complete set
of P = {0, 1, 2}. As an example, Table 6 shows the
recognition rate of Caltech 101 with 30 training im-
ages under selected pyramid configurations.
From these results we can see that while the per-

formance of P2 is far from Pnw (both are using the
traditional SPM) with 2.33% difference, OWSPM and
CWSPM managed to shrink that difference into mere
0.53% (Pow − P2o) and 0.67% (Pcw − P2c), respec-
tively. Both displayed surprisingly good results and
in fact exceed the results from the traditional SPM by
0.63% (P2o−Pnw) and 1.02% (P2c−Pnw). This result
suggest that when memory allocation is limited, one
can cut 24% of the memory cost by simply bypassing
the l = 0 and l = 1 layer using OWSPM or CWSPM.
By doing so, rather than using 21 sub-windows, we are
only using 16 sub-windows for our image representa-
tion. These results are still consistent when tested on
different datasets and training number, as shown in
Table 7.
While it is clear that the complete pyramid gives the

best results, our experiment shows that image repre-
sentation using the l = 2 layer only is not falling too far
behind, and may be used for a reasonable compromise
where memory cost are of importance.

6 Conclusion

We proposed two extensions to the traditional Spa-
tial Pyramid Matching (SPM) throughout this paper
by using the concept of overlapping spatial windows.
The first proposal, called OWSPM, extends the rectan-
gular sub-windows to be overlapping with each other
without changing the number of sub-windows, while
the second proposal, called CWSPM, extends OWSPM
further by using the circumcircle of the rectangles. Our

Table 7. Average recognition rate of Caltech 101
database, Caltech 256 database, and 15 scene
database using various pyramid configurations.

Database Pnw [2] P2o Pow

15-Scene (100 train) 80.28% 80.30% 81.54%
Caltech 101 (15 train) 66.28% 66.83% 67.57%
Caltech 101 (30 train) 72.46% 73.19% 73.72%
Caltech 256 (15 train) 27.73% 29.79% 31.31%
Caltech 256 (30 train) 34.02% 34.96% 36.57%
Caltech 256 (45 train) 37.46% 37.60% 39.15%
Caltech 256 (60 train) 40.14% 40.36% 41.27%

Database Pnw [2] P2c Pcw

15-Scene (100 train) 80.28% 80.48% 81.62%
Caltech 101 (15 train) 66.28% 67.28% 67.68%
Caltech 101 (30 train) 72.46% 73.48% 74.14%
Caltech 256 (15 train) 27.73% 30.83% 31.41%
Caltech 256 (30 train) 34.02% 35.19% 36.59%
Caltech 256 (45 train) 37.46% 38.86% 39.32%
Caltech 256 (60 train) 40.14% 40.38% 41.50%

experiments shows that the average recognition rate
for all datasets are increased with the introduction of
OWSPM and CWSPM, where the circular windows
SPM performs best out of all image representation
method tested.

In addition, it has been shown that the usage of
OWSPM and CWSPM opens up possibilities of by-
passing the lower layers of traditional SPM to cut both
computational and memory cost by 24%. As this con-
cept are tested using ScSPM which has been a ma-
jor building block of current state-of-the-art approach,
we are confident that applying overlapping windows
may give a significant contributions to the latest im-
age recognition approaches.
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