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Abstract

In this paper, we propose a physics-based method
to synthesize facial images in visible wavelengths from
multi-band near infrared (NIR) images. The study
on photometric properties of human skin shows that
melanin and hemoglobin components are dominant fac-
tors that affect the skin appearance under different light
spectrum. Specifically, a set of intensities observed at
a certain surface point with varying wavelength is rep-
resented by a linear combination of both the pigment
components. Our proposed method learns the spectral
basis vectors, which describe absorbance due to both the
pigments, from multispectral image dataset by using
Independent Component Analysis (ICA). Then, our
method estimates the coefficients, which are pixel-wise
densities of both the pigments, from a multiband NIR
image, and finally converts it to a visible light (VIS)
image. We demonstrate that our proposed method
works well for real facial images even though only a
small dataset is available for learning basis vectors.

1 Introduction

One of the major challenges in face recognition is
how to deal with images taken under varying illumina-
tion or low-lit images [1].

To alleviate the problem, Li et al. [2] proposed a
system using active near infrared flash to acquire illu-
mination invariant facial images. However, their sys-
tem is based on the strong assumption that NIR im-
ages are available as gallery images as well as probe
images. This limits the applicability of the system be-
cause NIR images are often unavailable for gallery im-
ages, e.g., photos on a passport or a driving license. In
such cases, probe NIR images are matched against VIS
gallery images, resulting in poor recognition accuracy
because the appearance of a face changes significantly
between NIR and VIS images.

Several methods for matching NIR images to VIS
images have been proposed. One approach focuses on
extracting features invariant across both NIR and VIS
spectra [3, 4]. Another approach try to synthesize a
VIS image from a NIR image [5–8]. The advantage
of the latter approach is that existing face recognition
systems can be used with no modification. For this
reason, we focus on the latter approach and, in partic-
ular, we propose a method for converting NIR images
into VIS images based on the photometric properties
of human skin.

Chen et al. [5] proposed a method for NIR to
VIS image conversion based on local linear embedding.
Each image patch is approximated by a weighted sum
of their k nearest neighbors of training NIR patches

using local binary pattern (LBP) similarities. Then a
VIS image is synthesized by using the same weights and
corresponding VIS patches. Zhang et al. [6] extended
this idea by using sparse representation. Shao et al.
[7] learned the relationship of VIS and NIR images by
using a multifactor analysis. Similarly, Zhang et al. [8]
learned the relationship of NIR and quotient images.
All of these methods share the same problem that a
large number of patch pairs are necessary, e.g., patches
collected from more than 100 individuals, to produce
satisfactory results. This is because these methods try
to convert NIR patches to VIS patches without con-
sidering the underlying physical phenomenon.
Human skin is a multi-layered structure with vari-

ous pigments. Melanin and hemoglobin pigment are
dominant pigments that affect skin appearance [9, 10].
Tsumura et al. [11] proposed a technique to extract
melanin and hemoglobin bases and densities from a
RGB spectral by using ICA [12]. They synthesized
various skin colors such as tanning and alcohol con-
sumption by changing the extracted pigment densities.
However, their analysis was limited to RGB color chan-
nels, and no discussion was made for skin appearances
in the NIR spectrum.
In this paper, we propose a method for converting

NIR images to a VIS images on the basis of the skin
pigment model. Our method estimates the coefficients,
which are pixel-wise densities of two dominant pig-
ments, from a multiband NIR image, so at least two
images under different spectra in NIR1 is needed. From
the estimated pigment density and spectral bases, we
can synthesis the images of VIS spectral.
As far as we know, this work is the first time attempt

to extract skin pigment density from multispectral NIR
images and synthesize to VIS images by using skin pig-
ment model. Through the experiment, we confirm that
our proposed pixel-wise density based prediction is able
to synthesize VIS images with little training samples.
The rest of this paper is organized as follows. In

Section 2, the skin pigment model is briefly introduced.
In Section 3, our proposed framework for synthesizing
a VIS image from multi-band NIR images is described.
In Section 4, results of our experiments are shown and
discussed, followed by a conclusion in Section 5.

2 Skin Pigment Model

The color of human skin changes with respect to
subsurface scattering of dermal and epidermal layers

1The use of special equipment for capturing multispectral
NIR images could be a limitations of our proposed method from
a practical point of view. Recently, however, such equipment
is getting more popular in the field of multi-spectral imaging
[13, 14], and could be used for our purpose.

MVA2013 IAPR International Conference on Machine Vision Applications, May 20-23, 2013, Kyoto, JAPAN5-4

153



Figure 1. Light transport model of epidermal and
dermal layers.

[9, 10]. Fig. 1 shows a light transport model of
epidermal and dermal layers, where subsurface scat-
ter of both layers are well-considered. Melanin and
hemoglobin pigments are predominantly contained in
these layers. The subsurface reflectance of these layers
are modeled by modified Lambert-Beer law [11] as,

L(λn) = exp{−qmrm(λn)− qhrh(λn)}E(λn), (1)

where λn is the n-th wavelength of incoming/outgoing
light, E(λ) and L(λ) are the spectral distributions
of incoming irradiance and outgoing radiance, respec-
tively, and qm, qh, rm(λ), rh(λ) are the pigment
densities and absorbance coefficients of melanin and
hemoglobin, respectively.

Taking the logarithm of Eq. (1), we obtain the fol-
lowing additive form,

c(λn) = qmrm(λn) + qhrh(λn) + b(λn), (2)

where c(λ) = −log(L(λ)), and b(λ) = −log(E(λ)).
This equation shows the linear relationship of ir-
radiance on logarithmic domain and melanin and
hemoglobin pigments. In other words, if we observe
a certain surface point of a skin with N spectral
wavelength, the N -dimensional multi-spectral obser-
vation of logarithmic radiance [c(λ1) − b(λ1), c(λ2) −
b(λ2), ..., c(λN ) − b(λN )] lies in two dimensional sub-
space spanned by [rm(λ1), rm(λ2), ..., rm(λN )] and
[rh(λ1), rh(λ2), ..., rh(λN )].

3 Skin Pigment-based Image Synthesis

In this section, we describe the proposed synthe-
sis method based on skin color model introduced in
Section 2, which is applicable in both VIS and NIR
spectra. The conceptual diagram of the proposed
method is shown in Fig. 2. We use multispectral
images which cover VIS and NIR spectrum. We de-
note logarithmic of N pixel values obtained along
wavelength axis at position (i, j) as a column vector,
c = [c(λ1), c(λ2), ..., c(λN )]t Then, we rewrite Eq. (2)
by vector and matrix formulation as follows:

c(i, j) = Rq(i, j) + b, (3)

where R = [rm, rh], rm = [rm(λ1), rm(λ2), ..., rm(λN )]t,
rh = [rh(λ1), rh(λ2), ..., rh(λN )]t, q = [qm, qh]

t, and
b = [b(λ1), b(λ2), ..., b(λN )]t is a constant bias vector
caused by irradiance. In this work, we assume constant
illumination condition throughout our experiments, so,
b can be calculated as b(λn) = mini,j(log(c(i, j, λn)))
for each wavelength.

Fig. 3 shows the framework of our proposed method
composed of 3 main steps; these are spectral basis
learning, pigment densities estimation, and VIS images
synthesis.

Figure 2. Conceptual diagram of the proposed
method.

3.1 Learning spectral basis

A dataset composed of N spectral images of various
subjects are first acquired from VIS and NIR spectra.
Skin patches with size of W × H are clipped from K
subjects to form the training set. For each spectral,
patch is expressed as a P (= WH) dimensional column
vector. Then patches from all subjects are concate-
nated to form a N–by–PK data matrix C. Fig. 4
shows the flow chart of the decomposition of this data
matrix into two matrices which are corresponding to
pigment densities and absorbance coefficients.
To extract two-dimensional subspace of the domi-

nant pigments, principal component analysis (PCA) is
firstly applied [11]. Fig. 5 shows the cumulative contri-
bution ratio of 6 principal components obtained from
the 6 spectral data used in the experiment. This figure
shows that two principal components are sufficient to
describe the values of 6 spectra with accuracy as high
as 96.8%.
Then, the input data is projected onto the two-

dimensional subspace spanned by eigenvectors corre-
sponding to first and second principal components.
We then perform ICA [12] on projected data to

decompose the data matrix into 2 matrices, which
are mixing matrix R and densities matrix q. Note
that mixing matrix R is composed of spectral basis
of melanin rm and hemoglobin rh, that describe ab-
sorbance coefficient of both pigments at specific wave-
length.
Each spectral basis vector is divided into two subvec-

tors based on NIR and VIS spectrum region. Subvec-
tor on NIR region Rnir is used for estimating density
map of melanin and hemoglobin. On the other hand,
subvector on VIS region Rvis is used in synthesis step.
Similarly, the bias vector obtained from the training
set is divided into subvectors and used for following
steps.

3.2 Estimation of density maps

Given at least two NIR images taken under different
wavelengths, density map of melanin and hemoglobin
densities can be estimated using least square estima-
tion as follows:

q̂(i, j) = argmin
q(i,j)

‖ cnir(i, j)−Rnirq(i, j)−bnir ‖2, (4)
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Figure 3. Schematic flow of the proposed method.

Figure 4. Decomposition of data matrix into
melanin and hemoglobin factors.

where q̂(i, j) is the estimated pigment densities at posi-
tion (i, j) on image, cnir is logarithmic values of input
NIR images, and bnir is the subvector of bias vector in
NIR region.

3.3 Synthesizing VIS images

For synthesis step, we use the estimated q̂ and Rvis

in Section 3.1 to synthesize images in VIS region. The
synthesis process is indicated as

cvis(i, j) = Rvisq̂(i, j) + bvis, (5)

where cvis is logarithm values of output VIS images,
and bvis is the subvector of bias vector in VIS region.
We then find the inverse log of cvis and reshape it back
to image size.

Since we estimate and synthesis in a pixel-wise
manner using common spectral basis of melanin and
hemoglobin over a face, registration of face patch is
not needed. Therefore, our method can be also appli-
cable to facial images with different expressions and
orientations to the training set.

4 Experiments

In this work, we set N=6, where we use 3 NIR im-
ages to synthesize 3 VIS images (RGB-channels) to
confirm the validity of our proposed method. Three
NIR images are used instead of two to reduce the den-
sity estimation error. We implemented a multispec-
tral imaging system composed of a camera (Chameleon
CMLN-13S2M-CS) and a filter wheel with 6 band-pass
filters attached to it. Band-pass filters used are of
narrowband range with center wavelength at 450nm,
532nm, 610nm, 766nm, 880nm, and 960nm, respec-
tively. Facial images of 8 subjects are acquired at 6
wavelength mentioned above. Face region of images

Figure 5. Relationship between the number of
components and the cumulative contribution ra-
tio in skin image set of 6 spectra.

Figure 6. Estimated pigment densities corre-
sponding to two independent components. Lower
intensity indicates lower pigment density.

are clipped into the size of 200×200. Training set is
composed of patches clipped from face region of frontal
facial images with neutral expression. For evaluation,
facial images of the same subjects include different ori-
entations and expressions to training set are acquired,
and we learn spectral bases from different subjects to
input NIR images.
Fig. 6 shows the result of pigment densities estima-

tion based on two learned spectral bases of melanin
and hemoglobin. Fig. 6(a) shows lower concentration
of pigment at the lip region and higher concentration
of pigment at mole spot on the right cheek. This esti-
mation result agrees well with the physiological facts of
melanin [9]. Similarly, Fig. 6(b) shows higher concen-
tration of hemoglobin pigment on lip region. However,
because the pigment model holds only for skin region,
pigment densities at the region of eyes and eyebrows
are not estimated correctly.
Fig. 7(a) shows synthesized VIS images by using two

pigment densities shown in Fig. 6. The synthesized
images look fine with details such as mole on the right
cheek preserved. Synthesized results for probe images
of side view and with expression are shown in Fig. 7(b)
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Figure 7. Synthesized VIS facial images (a)of frontal view, (b)of side view, (c)with expression.

Figure 8. Mean absolute error of synthesized im-
ages in different number of subjects involved in
training set.

and Fig. 7(c), respectively. Note that although our
training set contains only skin patches of frontal view
and neutral expression, our proposed method is able
to convert probe NIR images of different orientations
and expressions to RGB images. However, through-
out our experiments, the appearance of eyes region is
not synthesized to be what expected under VIS spec-
trum. This occurred because our pigment model holds
only for skin region. It can be refined by separating
eyes region from facial images and applying different
synthesis algorithm for that region.

Fig. 8 shows the mean absolute errors of synthe-
sized images in different number of subjects to be in-
volved in training set. Errors are evaluated by aver-
aging the absolute difference between synthesized im-
age and ground truth image of all pixels. Error of
the synthesized images are reduced as to increase the
number of subjects involved in training set. Because
spectral bases are interpersonally invariant, the use of
skin patches clipped from 2–3 subjects are sufficient
for our learning process.

5 Conclusion

We proposed a framework for converting facial im-
ages from multi-band NIR images to VIS images based
on photometric properties of human skin. Experimen-
tal results showed that our proposed method works
well for real facial images with different orientations
and expressions even when only a small dataset is avail-
able for learning.

For future work, the following issues still remain
to be addressed: applications to different illumination

conditions of spectral distribution or direction, and the
use of camera with different spectral sensitivity.
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