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Abstract

This study developed a face hallucination system based
on a novel two-dimensional direct combined model
(2DDCM) approach that employs a large collection of
low-resolution/high-resolution facial pairwise training
examples. The proposed 2DDCM approach achieves face
hallucination by addressing three key issues. First, we
directly combine each low-resolution and high-resolution
pairwise image in a concatenated form in order to com-
pletely preserve their relationship. Second, images are
formed as two—dimensional matrices instead of vectors
in order to preserve the facial geometry. Third, both the
vertical and the horizontal facial-geometry features are
considered in 2DDCM approach. Experiments demon-
strate our approach can synthesize high quality
reconstructed facial images from given low-resolution
images.

1. Introduction

The need for face hallucination, i.e., reconstructing the
high-resolution facial image from a given low-resolution
image, is present in many computer vision and multime-
dia applications. For example, the task of recognizing
faces in a video [1, 3] using reconstructed high resolution
facial images may improve the facial recognition rate or
at least aid the recognition task. Unlike other super reso-
lution approaches proposed in [4, 8, 13], where the
targeted images are without any particular structure, the
images processed in the face hallucination framework
consist of common facial structures (e.g. the eyes and
nose). Consequently, we propose a two-dimensional di-
rect combined model (2DDCM) approach for face
hallucination with the help of a set of
low-resolution/high-resolution facial pairwise training
examples in order to learn facial structures.

Naturally, the effectiveness of face hallucination de-
pends on the accuracy of the underlying transformation
between the low- and the high-resolution facial images.
Accordingly, the proposed 2DDCM approach addresses
the following three distinguishing characteristics for the
derived transformation of face hallucination: (1) Com-
pared to existing independent model approaches [6, 9,
10], the relationship modeled by the combined formula-
tion method [2, 5, 12] is more flexible and completely
reveals their primary facial properties. Consequently, the
2DDCM approach directly couples each pairwise exam-
ple in a combined formula in order to completely
preserve their correlation. (2) Inspired by approaches in
[11, 14], we apply the 2D matrix image representation in
the proposed 2DDCM approach. Compared to the con-
ventional pixel-based vector image representation, the
2D matrix image representation doesn’t destroy facial

149

structure and provides significant help for further ana-
lyzing the vertical and horizontal facial structures. (3)
The pairwise training examples in 2D combination rep-
resentations are then used for deriving the transformation
of face hallucination. Such transformation synthesizes
quality reconstructed faces by emphasizing the facial and
the horizontal characteristics; these characteristics are
important, but have been given less emphasis in previous
literature, e.g. [5, 6, 7, 9, 10, 11].

2. Two-dimensional direct combined model

Our method for deriving the transformation of face
hallucination starts with a novel representation, 2D com-
bination formulation, of two related classes. In the
current scenario, one class is the set of low-resolution
facial images L, and the other class is the set of their
corresponding high-resolution facial images, H. Assume
there are K  training  pairwise examples,
{(,h), (L, hy),....,(Lg, b )}, where each image of the
pair is a random vector of the class L or H. Consider now
each image (/; or ;) are M x N pixels (/; is up-sampled to
the same size as the targeted high-resolution image #;).
To better preserve the geometric properties of faces, such
as the symmetry of the facial structure or the relative sizes
of facial features, we then define the M x N facial image
as a M x N random matrix, i.e., /; is represented as a matrix
form A" and the matrix form of 4, is A . Further, to
carefully preserve the pairwise correlation, the i-th pair-
wise training example, (/;,%), is formulated by 2D
combination representation A4, .with size 2Mx2N :

{A.L 4

4= IH:| >
Ai Ai 2MX2N

where upper M rows of 4, correspond to the
low-resolution class, L , and the lower M rows of A4,

correspond to the high-resolution class, H. The last N
columns of A4, are the augmented matrix for the pair of
(A", 4", i.e. we constrict the image resolution of class
L to its high-resolution version in (1).

To better expose vertical and the horizontal character-
istic features of these K training examples, we extracted
two feature spaces U and V, where the variance of all
training 2D combination matrices, {4, ,4,,...,4,} on
these two spaces is maximized. Such covariance matrix
is defined as:

(1

Cyy = %Z[UTAA,. VU A4, V] 2)

i=1
where A4, denotes the unbiased matrix of 4, , i.e.
A4, =4, —A; A is the mean matrix of all training

matrices.
Using the matric trace r(Cy ) =tr(V'AA"UU" A4V)
=tr(U"AAVVTAA"U) , spaces U and ¥ in (2) are solved



Figure 1. Illustrations of C;and C; in (5) and (6)
with either VV' =1 (in (5)) or UU" =1(in (6)). (E
denotes the empirical expectation).

by the following flip-flop procedure:
U-step: Let V' be the current estimated V-space, rewrite
the objective function, and U is found using the following
optimization formula:
K
r(UT ALV AU

g}aX,Z r(U"A4 U 3)
V-step: Similarly, with the estimated U -space, we can
solve for J-space by:

max er(V A4, UUTA4TY)

vt =1

“4)

The matrix trace is a linear function, thus the summa-
tion can be moved inside the trace in (3) and (4). Let C;
denote the covariance matrix along the ¥ space:

C{,L CLH 1
C, :[CZ’L cm K;AA VA4, (5)
and analogously,
CéL CLH 1
CU = [CZIL CHH K ;AATUU AAn (6)
, where C* C™ are the covariance matrix of class L
and class H respectively and C™ =(C*)" is the

cross-covariance matrix between these two classes.

We accordingly solve the optimal projection axes, U
space, in (3) by applying the singular value decomposi-
tion (SVD) process on C;, where {U,,...,U,} are the
orthonormal e1genvectors correspondmg to the leading d
largest eigenvalues {4,,.. ﬂv} Similarly, {V},....V,}
in (4) are the orthonormal eigenvectors of C; corre-
spondmg to the leading d' largest eigenvalues
{4,...., A7} . That is, ¥ and U spaces are solved by the

followmg two eigenvalue formula:

e ¢\ vz vz
atoan) vzl vz

()
¢ _(vEv vEy
ctoclt) vl ovERy

where we denote U =[U, U1 and V=[] V1.

The two-dimensional direct combined model is U and V.
The roles the two-dimensional direct combined mod-

els, V and U, are shown in Figure 1:

e (; in (5) is the within-individual covariance matrix
between column vectors. That is, the extracted U
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vectors give the major components of the facial ver-
tical structures.

e Similarly, C; is the within-individual covariance
matrix between row vectors. It indicates feature ex-
traction is performed to emphasize facial horizontal
structures shared by the columns of the training pairs.

In summary, incorporating by the 2DDCM, V and U,
the structurally-meaningful facial characteristics of the
training pairs are extracted.

3. 2DDCM-based transformation

Once the 2DDCM are established, we then learn the
transformation from class L to class H. As with typical
eigen-based approaches, any pairwise facial example, 4,
can be reconstructed by:

P(A|w,) o expi-| - (U, + A7)||2 /o)
8
P(A|w,) o expl-| 4"~ Vi, +A7T)||2 /6% ®

2 2 :
where o, and o, are variance of error term. The
distribution of the weight vector wy or wy is also Gauss-
ian, 1.e.

P(w,) o exp{-w) A w, |1 P(w,) o< exp{—w/A'w, | (9)

where = dzg{ﬂy LA and A, =digih),.. A0}

are diagonal matrices; {J,U AL} are the elgenvalues
of C,;,and ...V, } are 1the eigenvalues of C
From (8) and (9), we have the minimum

mean-square-error (MMSE) estimator of A" € H :

A" (4% = argmin H (A" — A"V P(A, w)dAdW = arg min
A]I A”

IP(AL | w)P(w) j (A" — A" PCAY | A wydAdw (10)

,where A" s the estimated vector of A, P(A,w) is
the joint probability of the observable matrix A", the un-
observable matrix 4", and the unobservable matrlx w;
A (A ) is the estlmated matrix 4” for a given 4%; the
result of the first equation is approximated by max1mlz—
ing the second equation since the weight matrix w is
constricted by 4.

We solve (10) by a two-step inference: First, estimate
w by maximizing P(4" | w)P(w):

( 2
. L T

wy, :argmm”AA -U,w, +,w, AUWU"
Wy

(11)
w, =arg min "AAL -V,w, + 4w, A, w, "

where AA* is the unbiased matrix of A4°, and A is
the predefined weights for (8) and (9). Since the objective
function is a quadratic form, we get closed-form solu-
tions:

Wy =(UU, + A, U AL
. (12)
= (VLTVL +A’VVU71 ) 1 VLT(AAL)T



Training Process:

2DDCM Global
/Local Modeling

(a) (b) (c) (d)

Figure 2. Framework of proposed face hallucination using
2DDCM. (a) low-resolution input. (b) result of (a) by
Cubic B-Spline. (c) result by the proposed method after
global stage (d) final output.

Second, the estimated A™ is considered as the ex-
pected matrix of the }L)osterior probability of 4" for a
given observation A° and an estimated W, ie.
E[A" | A*,W]. Under the assumption that the joint dis-
tribution of A4“ and 4” is a single Gaussian distribution,
the MMSE estimator, e.g. (10), becomes:

MH (AL) - (CLL )—IAAL (\/AV) (13)

where AA”(A) is the unbiased estimated matrix of 47
for a given 4%, AA"(w) is the unbiased matrix of 4"
given w, the C"* is the cross-covariance matrix of class
H and class L, and (C*")" represents the inverse covari-
ance matrix of L.

Finally, using the 2DDCM model, U and V, in (7), the
optimal 4” by the 2DDCM transformation in (13) be-
comes:

Al =U, (UU, +2,0,") U A4

(14)

A4 =V, (V7 + A, *‘) V7 (a4h)T

In summary, although A* and 4” are initially combined
in two-dimensional direct combined model, the trans-
formation of 2DDCM algorithm seeks to estimate
(separate) A" from a given A", as shown in (14). Such
transformation is directly derived from the 2D learned
feature spaces, U and V, which facilitate exploring the
meaningful relationship between the structures of classes
Land H.

4. Face hallucination using 2DDCM

This section introduces the framework based on the
2DDCM approach for face hallucination. As illustrated in
Figure. 2, our face hallucination framework involves the
global and local stages for reconstructing high-resolution
facial images. The training procedure is described in Ta-
ble 1, where the global stage consists of one block, b,,,, =
1, and the local stage of b,,,, = 4

Table 1. Training procedure of 2DDCM alogrithm
2DDCM Modeling (b,,,...):
1. Equally divide each training image /, or 4 into b,,,
X b,,» non-overlapping regions.

2. For each region r=1,..,5,,, %b,,.,

- Initialize U and V as identity matrices

- Formulate each patch-pair by 2D combination repre-
sentation in (1)

- Repeat the following steps, at /" step_
(a) Compute C;' by (5), update Q” «U by ().
(b) Compute C” by (6), update V' <V by (7).
(¢) Compute the objective function C;, in (2)
- Stopwhen C', -C/' <&l '

Return b % bm,m U and ¥V models.

In the reconstruction process, the low-resolution input
image / is first up-sampled to the target size and presented
asan M x N image. The transformation of the 2DDCM
for the testing process of face hallucination is described
as shown in Table 2.

Table 2. Testing procedure of 2DDCM alogrithm

2DDCM Transformation (b,,,,):
1. Equally divide the up-sampled input M xN image,
AL, into b, X b,y NON- overlapping regions.
2. For eachregion r = 1,..., by X Dy
(a) Compute A" of AL by (14).
(b) Let A" « AH "
(c) Compute A’” of A" by (14).

Return: Reconstructed result, A7 « {AH P X

r=1

S. Experimental results

The training database used in the current study con-
sisted of 100 full-frontal facial images of subjects of
different ethnicities, all with a neutral expression. The
testing database contained 50 frontal-view facial images
taken under normal conditions. Subjects in the testing
database are not in the training database. Facial images
within both databases were manually labeled with seven
facial feature points to manually align the facial images.
After an affine warp, each image is aligned to a canonical
96 x 128 pixel image. The high-resolution image is
smoothed and down-sampled to a low-resolution 24 x 32
image. We use standard SVD to solve (7) and the dimen-
sions of U and V are reduced to retain 98% of the
eigenvalue total. The values of 4, and A, are 0.1 in (11).

Some testing examples are provided (Figure 3(a) and
(b)). We compare our algorithm with existing methods,
the Cubic B-Spline, Fig. 3(c), and the linear parametric
model in [9] (results of [12] are quite similar to results of
[9]), Fig. 3(f). To test the performance of 2D formulation;
the non-linear method of the local stage in [9] is replaced
by its global linear parametric model. The method in [9]
is an example of independent approaches, where each
image is represented as a 1D vector, and the
low-resolution images and the high-resolution images are
modeled independently. Results by [9] do not look like
the same individual in Fig. 3(b). On the contrary, the
results of the proposed method (in Fig. 3(e)) can be rec-
ognized as the same individual in Fig. 3(b). Some results
of the global stage by 2DDCM approach are displayed in
Fig. 3(d). Although the global results are somewhat
blurred, they are still clearer than the results of the Cubic
B-Spline, Fig. 3(c). Furthermore, reconstructed images in
Fig. 3(d) have explicit global geometrical structures,
because the U and V space records the significant



Figure 3. Hallucination results. (a) low-resolution input; (b) original high-resolution image; (c) result by Cubic B-Spline;
(d) result of the global stage by the proposed method; (e) final result by the proposed method; (f) result by method in [9].
Note that boxes represent the apparent reconstructed differences between (e) and (f).

characteristics of the vertical and horizontal facial pat-
terns.

6. Conclusion

We have described a new method for learning the re-
lationship of two related classes, the low-resolution facial
image and its high-resolution version, based on a training
dataset. This work was motivated by the inefficiencies
and unsatisfactory results of representing two related
images by two individual 1D vectors. Compared with
existing approaches, the results of 2DDCM algorithm
embedding of the vertical and horizontal facial patterns
into the column and row spaces is more convenient for
improving face hallucination technology.
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