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Abstract

This paper presents a method for 3D lip registration
when tracking a face model from video and depth map
data. The inner and outer lip contours are tracked in
2D wusing features obtained from Boosted Edge Learn-
ing (BEL). Given the lip contours and a reconstructed
depth map, the 3D mouth region of a mesh is registered
at each frame independently, accounting for the self oc-
clusions of the lips that occur during speech. Experi-
ments show that this leads to significantly higher reg-
istration accuracy in the perceptually important mouth
region. The proposed method is also shown to have
lower error than an Active Appearance Model based
registration method.

1 Introduction

Realistic facial animation has long been a goal in the
graphics community and is typically achieved through
motion capture and significant manual work by skilled
artists. Computer vision techniques offer the potential
to reduce the amount of work necessary to produce
animations by using data-driven approaches to capture
detailed 3D models of actors performing. Recent work,
such as [5, 13], has demonstrated the quality of models
captured using such methods.

To fit into existing animation pipelines reconstruc-
tions captured by these techniques must be registered
throughout time. The lip region is difficult to track due
to rapid movements and large deformations, as well as
occlusions and disocclusions along the inner edge of the
lips. However it is perceptually very important, espe-
cially during speech. In this paper the lips are tracked
in input images and used to constrain the registration
of the rest of the face in 3D. Fig. 1 shows the stages in
the registration process.

2 Prior Work

One popular method for coarse registration over
time is to add markers to an actor’s face [3, 17, 19].
This provides robust registration, at the expense of
significant set up time and occlusion of any detail be-
hind the markers. Another approach is to use optical
flow to track motion between frames and to use some
form of regularisation to counter the effect of small er-
rors [, 6, 12, 22, 23]. Furukawa and Ponce [12] make
flow computation more reliable by adding extra tex-
ture to the face while Bradley et al. [5] use several
high resolution cameras so that fine skin details are
visible. Weise et al. [22] aid optical flow calculation
around the lips by using a colour space transformation
to increase their contrast with the rest of the face.

Tracking over long sequences can lead to drift. This
has recently been addressed by using either anchor
frames [2] or tracking non-sequentially [16]. Whilst
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Figure 1: Algorithm overview. (a) Input image, (b)
BEL probability map for inner lip contour, (c) estimated lip
contour positions, and (d) reconstructed mesh with consis-
tent parametrisation.

both of these problems reduce drift significantly they
are still susceptible to errors when registering the lip
region.

Morphable models provide another means of regis-
tration. Blanz and Vetter [4] demonstrated the power
of these models for representing static faces and De-
Carlo and Metaxas [9] showed how optical flow could
be used to drive them for dynamic facial registration.
While morphable models generally give visually pleas-
ing results they cannot capture motion outside of the
subspace that they span.

None of the methods mentioned above accurately
register the lips. While Bradley et al.[5] do track the
inner lip contour explicitly, this represents the occlud-
ing boundary from the camera’s viewpoint, not a fixed
line on the lips themselves.

Lip tracking is a long-studied problem and active
contour models [14] have been used in this area for
many years. In this framework a contour is optimized
according to a cost that incorporates local image fea-
tures as well as a smoothness term. An extension to ac-
tive contours that has also been applied to lip tracking
is the Active Shape Model (ASM) (8], a linear model
of the lip shape learned from a small set of hand la-
belled images. This increases robustness and conver-
gence speed over active contours but limits the result
to lie within the linear subspace spanned by the model.
A further extension of the ASM is the Active Appear-
ance Model (AAM) [7] which takes texture informa-
tion into account as well as shape, Nguyen and Mil-



gram [20] demonstrate this technique applied to lips.
Eveno et al. [11] use a modified version of active con-
tours, “jumping snakes”, that allows for initialisation
far from the target edge. Colour can also be used in
lip tracking, for example in [15], and feature based ap-
proaches have also been proposed, such as [21].

3 Image Based Lip Tracking

This section presents our method for inner and outer
lip contour tracking. The inner lip contour follows the
occluding boundary of the lips and the outer lip con-
tour lies between the lip region and its surrounding
face region. To track the lips the probability that any
given pixel is on one of the contours is calculated and
an active contour is then fit to this probability map.

3.1 Contour registration

When only local descriptors are used the boundary
between the lower lip and the teeth in one frame can
appear nearly identical to the boundary between the
tongue and teeth in another frame, making correct
classification of the inner lip contour challenging. To
overcome this problem a descriptor with a larger sup-
port region is used to take advantage of the surround-
ing structure. Boosted Edge Learning (BEL) [10] uses
a small set of training images in which edges have been
labelled to train a classifier for edge/non-edge pixels by
applying the Probabilistic Boosting Tree classification
algorithm to low-level image features taken from a wide
aperture around points on the labelled edges. A sepa-
rate BEL model is learned for both the inner and outer
lip contours by training on a small number of labelled
frames from the sequence to be tracked.

Once probability maps have been estimated for the
inner and outer contours, they are tracked sequentially
using an active contour [14] based approach. Each con-
tour is defined by N, points, each with a 2D image
position a;. The outer contour is registered with the
additional constraint that it must coincide with the
inner lip contour at the mouth corners.

Based upon the mouth position of the previous frame
an estimate of the location of the mouth corners is
made. The contour is initialised as an ellipse passing
through these corner points with its major axis ori-
ented vertically and a factor 1.5 times longer than its
minor axis to ensure that the starting position of the
contour is outside of the true contour, even when the
mouth is open Fig. 2(a). The contour is then con-
tracted by iterating between the following two steps
until convergence:

1. For each point on the contour find the inward fac-
ing normal from its two neighbours. Search along
a line in this normal direction starting from a
distance 30 outside the contour until a point in
the probability map with value greater than 7 is
reached or until the search has moved a distance
4 inside the contour.

2. Smooth the contour by averaging each point’s po-
sition with that of its neighbours n times.

The effect of these steps is to contract the contour,
allowing it to find edges with high probability in the
edge image only if they form a nearly completely closed

146

Figure 2: Active contour convergence. Convergence
given an edge probability map. Two additional lines have
been added to the map to show the robustness of the pro-
posed approach to false edges. The contour does not move
inside the inner lips despite gaps in the edge map. (a)-(c)
Iterations 0, 40, 100. (d) Final position after optimisation
from section 3.2.

contour. The smoothing step is essential and ensures
that small gaps in the true lip contour are bridged. A
sample optimisation can be seen in Fig. 2.

The threshold 7 can be set over a very wide range
due to the near binary nature of the probability maps
produced by the BEL stage, in all experiments it was
set to 0.5. The step length §, coupled with the number
of smoothing iterations n determines the ability of the
contour to move past partial edges. In all experiments
presented here § was set to 2 pixels and n to 20.

3.2 Contour optimisation

The procedure outlined above is highly robust but
results in the active contour settling on the outside
edge of the true contour instead of at its maximum. A
refinement step is used to improve the final result.

For each point on the contour a line search is carried
out along a line perpendicular to the contour to find
the maximum in a smoothed version (o = 2) of the
probability map. For point ¢ the maximum has a value
v; and occurs at image point m;. An optimisation is
then carried out to minimise the energy

N,
E = Eijnu+ Z%Haz' —my?,

i=1

(1)

where E;,; is the active contour’s internal energy [14]:

N, N
Eint = Z%‘Haz‘ —a; | +Zﬂi”ai71 —2a; +a;, 1%

i=1 i=1
(2)
Modulo arithmetic is used for the indices since the
contour is closed. «; and 3; are the same for all points
apart from the two mouth corners at which ; is set to
zero since a discontinuity in gradient is expected.

4 Face registration

To register a 3D face model over time we use the
approach of [23] with a modified regularisation term.
An initial mesh, My, is built in the first frame of the
sequence and is defined by N, vertices, where each ver-
tex 7 has an initial position pg; and a set of n; neigh-
bours whose indices form the set 7;. As the mesh is
deformed over time the position p; of each vertex 1
must be found. At each frame an input depth map
is given along with the previous mesh and an optical



vV/Projection of depth map

Outer contour

Vertices which would fall
within the inner contour
are considered occluded
for this frame

Equally spaced
vertices

Vertex on outer
contour

(b)

Figure 3: 3D Lip Representation. (a) Formation of lip mesh. Outer and inner contours are projected onto the depth
map and vertices are placed between them in steps of constant geodesic distance. (b) and (c) The number of vertices used
to represent the lips changes depending on the visible lip surface.

flow field from the last frame. The weighted sum of
three energies is minimised; a depth energy Eg4, a flow
energy F/y and a regularisation energy I,

E=wsE; + waf + w, E,. (3)

The depth and flow terms are the same as those in
[23] and enforce that the deformed mesh is consistent
with both the observed depth maps and the flow field
from the previous frame.

We use a regularisation term which enforces regular-
isation in Laplacian coordinates:

2
N
21
E, = Z - Z (Pi — Poi) — (P; — Poj) (4)
i=1 " ||jem

We found this regularisation to perform better on
the sequences tested than the original regularisation
term in [23] as it does not penalise uniform stretching.

The L-BFGS algorithm is used to minimise (3). The
above framework provides reasonable tracking over the
majority of the face, however around the lips the op-
tical flow term is not reliable due to rapid movement
along with occlusions and disocclusions.

4.1 3D Lip registration

2D lip tracking can be used to constrain the reg-
istration process described above. The two contours
tracked in section 3 have two different physical mean-
ings and are used in different ways.

The outer lip contour corresponds to a fixed line de-
fined as the boundary between the lips and the sur-
rounding face region. This means that points on this
contour correspond to the same points on the mesh at
all times. This can be enforced by adding an extra
term E; to equation (3) which forces the set of vertices
V}, that lie on the boundary between the lip and face
region, to coincide with the tracked outer contour:

2
B=Y pi LI

%

()

where 1; is the projection onto the depth map of the
point on the tracked contour corresponding to vertex i.
This term is added to the weighted sum in equation (3)
to give:

EzwdEd—‘rwaf + w,. B, +w E. (6)

The inner lip contour corresponds to the occluding
boundary of the lips and as such does not correspond
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to a fixed point. Due to the occlusion and disocclusion
occurring around the lips optical flow estimation can
be unreliable leading to poor registration. To simplify
the registration problem in this region we assume that
the lips do not stretch in the direction perpendicular to
the lip contours and we do not include the vertices on
the lips in the optimisation of equation (6). Instead,
the inner and outer lip contours are projected onto the
depth map and vertices are placed starting from the
outer contour going towards the inner contour in steps
of constant geodesic distance. This means that as the
lips become partly occluded, the number of lip vertices
changes as can be seen in Fig. 3.

5 Experiments

The proposed method was applied to a 2000 frame
sequence of a single speaker. The BEL classifiers were
trained on 13 hand labelled frames from the sequence,
chosen to cover a wide range of lip shapes. Depth
maps were provided through a combination of multi-
view stereo and photometric stereo as in [1]. Optical
flow was estimated using the implementation of Liu
[18]. Both depth maps and flow fields had a resolution
of 1200 x 1600. The weightings in equation (6) were
set to g = 6%, Ey =1, F = 6%, B = 1280, where
e was the average edge length in the mesh. Qualita-
tive results are best seen dynamically in the support-
ing video, however several stills are shown in Fig. 4.
Throughout the 2000 frame sequence there was only a
single tracking failure which was recovered in the next
frame.

To quantitatively analyse the accuracy of the system
the inner lip contour was labelled in every hundredth
frame and the average distance of each vertex on the
inner lip from this contour was measured. Fig. 5 shows
the improvement by including explicit lip tracking; the
average error over the 20 labelled frames was reduced
from 7.7 pixels to 1.7, with the standard deviation of
the results falling from 1.7 to 0.53 pixels. We com-
pared the proposed method to an Active Appearance
Model (AAM) based approach for 2D lip tracking. An
AAM was trained on the same images that were used
for the BEL models and used to track the lip region. It
can be seen from Fig. 5 that the average AAM track-
ing error is slightly higher (a mean of 2.7 pixels with
standard deviation of 0.62 pixels). More importantly,
AAM tracking was less robust, and the system had
to be manually reinitialised four times throughout the
sequence.




Figure 4: Face registration results. First column:
input image. Second column: resulting reconstruction. The
top two rows demonstrate successful registration. The third
row shows the only frame in the 2000 frame sequence in
which tracking fails.
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Figure 5: Registration error. Mean distance of pro-

jections of 3D wvertices on the inner lip contour to a hand
labelled contour. Explicit lip tracking significantly reduces
error and the proposed approach outperforms tracking using
an AAM.

Similar results were achieved when testing on a sec-
ond subject. The BEL classifier had to be retrained
using training samples from this new subject.

6 Conclusions and future work

A practical method for registering lip motion in 3D
has been proposed. BEL has been shown to be an
effective means of classifying points belonging to both
the inner and outer lip contours and a robust active
contour fitting approach was demonstrated using the
BEL probability maps. The contours tracked in this
way were used to deform a mesh whilst taking account
of the occlusions and disocclusions that occur during
speech at the inner lip boundary. Registration was
successfully demonstrated on a 2000 frame sequence
and outperformed tracking using an AAM.

In the future it would be interesting to apply the
same technique to other structures on the face which
form closed contours such as the eyes or eyebrows and
also to build a person independent BEL classifier and
observe its performance.
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