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Abstract

Suppose we have two sets of 3D points with their
associated 2D images from two distant positions (they
can be taken by LIDAR, stereo cameras or multi-
stereoscopic acquisition). Our work aims to improve
the performance of matching between these 2D images
in order to register the two sets of 3D points. We pro-
pose two approaches which use the 3D information in
order to transform the original images and to apply the
SIFT detector on the transformed images. The first
one is consisted of two algorithms, to segment the pla-
nar regions and to transform the initial images into
ortho-rectified images. The second one is based on con-
formal mapping. These approaches have been validated
and compared with a method which apply SIFT on ini-
tial images. The comparison shows that proposed meth-
ods increase the number of homologous points and that
the points are distributed all around common part of
the images.

1 Introduction

Computation of homologous points from a pair of
corresponding images (two different viewpoints) is one
of the most studied problems in computer vision and
photogrammetry. For example, it is the first manda-
tory step in all the photo-based 3D modeling pipeline
[1, 11, 18, 19, 20, 21] that has emerged in the past few
years.

Although the problem has received several satisfying
solutions [4, 6] when the images are taken from closed
viewpoints, it has been currently observed that, due
to geometric deformation, the number of matches is
decreased when the angles between the images are in-
creased. Some recent work (e.g. [8]) tends to solve this
problem using a combinatorial approach. Their results
are generally satisfying for the number of matches but
they still have drawbacks in terms of computation time
and outliers that need to be filtered.

Nowadays, it becomes more and more current that
for an image, we do not have only the photometric
information but also some 3D information. Most cur-
rent examples are given by modern LIDAR acquisition,
stereo cameras or multi-stereoscopic acquisition where
viewpoints are disconnected (see figure 1).

In this paper, we focus on the following problem:
when, for two viewpoints, there exists both depth and
image information, how can 3D information be used
to improve the performance of matching between these
images?

Figure 1. Acquisition devices used to acquire
“3D+image”: laser scanner, stereo camera and
multi-stereoscopic acquisition.

2 Related work

Three types of problems and approaches can be dis-
tinguished in the literature for computation of homol-
ogous points from different views:

• Image to Image registration: For this case, there
are only two images of the same scene, the research
focuses on how radiometry can be used to give
some invariance to geometric deformation. Due
to the high dissemination of digital camera, the
research has given the most attention by the com-
munity since several years ago.

• 3D to 3D registration: The matching is based ex-
clusively on geometric primitives. This topic has
become more popular since the emergence of laser
scanner at the beginning of the year 2000.

• Mixed approach: Each viewpoint contains both
radiometric and geometric information. The ap-
proach is generally to privilege the radiometric
information, which is more discriminative, using
the geometric information to correct the distor-
tion due to difference in viewpoints.

In image to image registration, the process is gener-
ally composed of three steps: 1) Extraction of salient
points like corner [16, 17] or maximum Laplacian [4, 5],
extraction of salient regions is also a common alterna-
tive [6]. 2) Computation of local descriptors in the
neighborhood of these points, the gradient based SIFT
descriptor being the most currently used in stereo-
vision problems. 3) Matching between the descriptors
to detect the homologous points, where an algorithm
[3] can efficiently match large dataset of descriptors.
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To limit the problem of distortions due to wide base-
lines, much attention has been given to the invariance
of description [7, 8].
In 3D to 3D registration, one of the most popular

methods is the Iterative Closest Point method [14]. It
is basic and efficient in general, but it requires some
initialization, which can be solved using identification
of common primitives like plane and some RANSAC
strategy [15]. However, it requires that the scene con-
tains at least three significant planes, which is not al-
ways satisfied.
For mixed approach, recent work [9, 10] extracts

putative planes from the depth information and uses
these planes to correct the perspective distortion. An-
other study [12], working on face recognition, applies
conformal mapping to transform an initial image and
uses global correlation between the developed images
to improve the recognition performance.

3 Proposed approach

3.1 General invariance strategy

Suppose we have two images acquired with wide
baselines and associated depth information (see figure
2). Due to state-of-the-art research on image matching,
we now have very efficient tools to extract points and
compute their descriptors that are invariant to trans-
lation, rotation and scaling. For each point of an im-
age, if we know the relevant 3D surface, then we have
all necessary information to compute locally an image
that corresponds to a virtual acquisition done from a
camera which is orthogonal to the surface. It will be
called “ortho-rectified image”. Whatever maybe the
surfaces and the geometry of acquisitions, for a given
homologous pair, the two ortho-rectified images are
identical up to a planar similitude (translation, rota-
tion and scaling).
Our general strategy uses the depth information in

the matching process by following steps:

1) Compute images that are locally ortho-rectified,
and memorize the mapping from initial into ortho-
rectified image.

2) Compute the matching between the ortho-rectified
images.

3) Import the point matches into the initial geometry,
using the inverse mapping.

The idea of this process is that the ortho-rectified
image being identical up to a similitude and SIFT ap-
proach being invariant to scaling and rotation. We ob-
tain the matching process that is completely invariant
to geometric deformation.
In the following sections, we discuss in more details

how this can be done. The first method is usable for
planar scenes (3.2) and the second method is usable
for smooth surface scenes (3.3).

3.2 Planar scene

The first approach is applicable in specific scenes,
like urban scenes, where 3D structure of the scene is
essentially made from planes. The implemented pro-
cess can be described as following:

• Extract plane regions from the depth images. This
is done by a standard method. We randomly gen-
erate square windows. Each window is a seed
to compute a planar region by a region growing
method. At the end, we iteratively select the re-
gion having the maximal area of point not already
affected to an existing region.

• For each planar region, compute the ortho-
rectified image corresponding to a virtual cam-
era having its orthogonal axis to the plane (figure
3b). Then the homography matrix is computed
between original and ortho-rectified images, which
can be used to resample the original image.

• Perform the matching, using SIFT algorithm, be-
tween the ortho-rectified images and convert the
point matches into the initial geometry (figure 3a
and 3b).

a) Two corresponding images: “Façade” view 1 and 2.

b) Disparity map and segmenation regions of view 1.

Figure 2. An example of planar scene: a) two
views, b) disparity map and segmentation results.

Figure 3 and table 1 present a comparison of the
results obtained from standard SIFT and the ortho-
rectified images. Table 1 shows that the number of
good matches obtained from the ortho-rectified is bet-
ter than the standard SIFT. However, the number of
matches is not only an issue. Another advantage is
that the point matches are distributed on the common
part of the image (more homogeneous than the stan-
dard SIFT as shown in figure 3b), which is the point
matches to use for registration in 3D adjustment.

Table 1. Comparison of #matches between orig-
inal and ortho-rectified images (façade).

Façade Standard SIFT Ortho-rectified
#keypoints 1 25,629 12,190
#keypoints 2 22,678 4,942
#matches 338 600

3.3 Smooth surface scene

The previous approach gives satisfying results on 3D
scenes made from planar surfaces, like urban or interior
scenes. However, it is impossible to use it with more
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a) SIFT match on original images.

b) SIFT match on ortho-rectified (blue region of figure 2b).

Figure 3. Comparison of point matches between
a) original and b) ortho-rectified images (im-
proved matches in dashed line).

complicated surfaces like human faces or sculptures.
To generalize this approach with any smooth surface,
without multiplying the number of rectification planes,
we need to map the 3D surface on a unique plane with a
single one to one mapping. To preserve the invariance
between two viewpoints, the Jacobian of this mapping
must be a similitude in every point (i.e. conserves the
angle). The theory of conformal mapping is perfectly
suited for this goal [13]. Let’s recall some classical
points of conformal mapping:

• They have been used for a long time by cartogra-
pher to map the sphere on the plane while preserv-
ing the angles (well known conformal projections
are Lambert, Mercator etc.)

• From a formal point of view, the Riemann’s uni-
formization theorem tells us that any 2D regular
manifold can be mapped by a conformal mapping
to some part of the plane.

• From a computational point of view, for a 3D sur-
face given by a mesh, there exist efficient linear al-
gorithms [13] to compute the conformal mapping
that send the 3D mesh in the plane.

• From a practical point of view, the least square
conformal mapping algorithm can be found in sev-
eral libraries. In our work, we have used a version
of the CGAL library [2].

The pipeline, we implemented for this case, is similar
to the planar case:

• Compute a smooth 3D mesh (the smoothing is
done by image low frequency filtering on the depth
map).

• Use the least square conformal map of CGAL li-
brary to compute a planar triangulation which is
the conformal development of the 3D mesh.

• Use the conformal map to resample the image, so
named “conformal image”. Figure 5 shows the

conformal images corresponding to the input data
in figure 4.

• Use SIFT to match on the conformal images.

• Use the inverse conformal mapping to transform
point matches into initial geometry.

Figure 4. An example of input data to our pro-
cess: two images and their associated 3D models.

Figure 5. Conformal images of figure 4.

Figure 6 presents a realistic example for using our
method on a camel sculpture. It can be seen that with
conformal mapping, detected points are distributed on
a much larger area.

Figure 6. Results: blue-the standard SIFT
matching, red-SIFT matching on conformal im-
ages (and converted into initial geometry).

Table 2 presents some quantitative results that show
the number of correct matches is significantly better
with conformal images than with initial images. Note
that, as with the planar case, the important improve-
ment is not quantitative but qualitative in the spatial
repartition of the point matches as shown in figure 6.

Figure 7 is more artificial. It presents the results
of our method on a sphere, which is the archetype of
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Table 2. Comparison of #matches between orig-
inal and conformal images (camel).

Camel Standard SIFT Conformal
#keypoints 1 29,947 25,712
#keypoints 2 28,328 27,647
#matches 360 1,624

smooth surface; two images are very wide baselines (90
degrees). It can be seen that with standard SIFT (blue:
in dashed line), the points are all located on a very
small part of the images. The part where can be found
the matches, in fact, there is a little distortion between
the images. Conversely, it can be observed that with
conformal matching (red), the point are distributed all
around common part of the images. Table 3 shows a
quantitative comparison of match points between SIFT
original and conformal images.

Figure 7. Same as figure 6, with very wide base-
line images (90 degrees).

Table 3. Comparison of #matches between orig-
inal and conformal images (sphere).

Sphere Standard SIFT Conformal
#keypoints 1 58,664 42,825
#keypoints 2 68,765 52,926
#matches 71 509

4 Conclusions

The aim of this work is to develop an algorithm and
software for efficiently computing homologous points
from a pair of images with associated depth informa-
tion. In this paper, we have presented two approaches
for solving specific sub-problems: one for the case of
planar scenes and one for the case of smooth surface
scenes. Both quantitative and qualitative evaluations
of the methods show improvement in the matching pro-
cess. Using the depth information to correct image
distortions, it is possible to obtain matches homoge-
neously located on the common part of the images.
However, the presented work is only the first step

that, to our opinion, validates our approach from a
theoretical point of view. Further developments are
required in order to obtain a fully automatic process for
matching of radiometric and depth image. The main
questions, we intend to address in the near future, are:

• Automate the segmentation of depth image be-
tween plane area, smooth area and “noisy” area
(like trees), this is necessary to obtain a fully au-
tomatic process.

• Use more sophisticated development than least
square conformal mapping, for example non lin-
ear isometric constraint to limit possible degener-
acy with unsmooth surface.

In a more long-term development, we intend to
compute directly the “3D isotropic SIFT on the 3D
surface”. This means that instead of computing an
anamorphous image, we will compute directly on the
initial image the result of convolutions by Gaussians
that are isotropic on the 3D surface.
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