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ABSTRACT 

As features within an image may be present at many 
scales, application of feature detectors at multiple scales 
can improve accuracy of the detected localisation and 
orientation. As the scale and size of a feature detector 
increases, so does the computational complexity of 
implementation across the image domain. To address this 
issue we present a novel integral image for hexagonal 
pixel based images and associated multi-scale operator 
implementation that significantly speeds up the feature 
detection process. We demonstrate that this framework 
enables significantly faster computation than the use of 
conventional spiral convolution, the use of a 
neighbourhood address look-up table on hexagonal 
images. 
 
1. INTRODUCTION 

A common requirement for image processing tasks is to 
achieve real-time performance. Motivated by the real-time 
processing capabilities of the human vision system, we 
consider how three characteristics of the human vision 
system may be combined in order to reduce computational 
effort when implementing low-level image processing 
algorithms. Firstly, we consider the way in which visual 
information is captured: a small region, the fovea, within 
the retina, contains photoreceptor cones that are arranged 
in a densely packed hexagonal structure. 
Correspondingly, we consider digital images in which the 
pixels are hexagonal. Secondly, within the fovea 
photoreceptive fields of ganglion cells do not overlap [4]. 
Typically, feature extraction is achieved by convolving an 
operator at every location in the image and hence uses 
convolution neighbourhoods that overlap. In contrast, we 
develop a framework for which the convolution 
neighbourhoods do not overlap. Thirdly, the human eye 
can be subjected to three types of movement: tremor, 
drift, and micro-saccades [7]. As a consequence of eye 
tremor - rhythmic oscillations of the eye - the human 
vision system does not process single static images, but a 
series of temporal images that are slightly off-set due to 
these involuntary eye movements. Therefore, we use a set 
of similarly off-set images, each of which is partially 
processed using non-overlapping convolution 
neighbourhoods.  

Although the presented framework can be used for 
many image processing algorithms, this paper uses edge 
detection as its application. In previous work [3] the finite 

element method was used to develop a systematic and 
efficient design procedure for operators for use with 
hexagonal images that are scalable through the use of an 
explicit scale parameter. A disadvantage of applying large 
spatial operators is the correspondingly long computation 
time. For traditional rectangular images, one approach 
developed to reduce the computational overhead 
associated with operator convolution is the use of integral 
images. Integral images provide a computationally 
efficient way of approximating convolution filters of any 
size on rectangular images, as the number of operations, 
and hence computation time, required to evaluate any 
rectangular region of an integral image is independent of 
the size of the region [9]. Integral images are a key aspect 
of the SURF detector [1] and have also been used for 
adaptive thresholding [2] and object detection [5]. 

In [8], we first presented the concept of fast edge 
detection using eye tremor, however this used the 
complete standard image.  In this paper we design novel 
integral spiral images that, when combined with a 
biologically-inspired approach for operator 
implementation [8], provide a framework for obtaining 
feature maps efficiently over a range of scales. In Section 
2 we present our novel integral spiral image, followed by 
the core 7-point operator design in Section 3. In Section 4 
we describe the framework for fast processing and present 
results in Section 5. 

 
2. SPIRAL IMAGES 

2.1 Spiral Architecture 
In the spiral architecture [6] the addressing scheme for the 
spiral image, denoted by S, originates at the centre of the 
image (pixel index 0) and spirals out using one-
dimensional indexing. Figure 1 shows the spiral 
addressing scheme for the central portion of an image. 
Pixel 0 may be considered as a layer 0 cluster. Pixel 0, 
together with its six immediate neighbours indexed in a 
clockwise direction (pixels 1,…,6) then form a layer 1 
cluster centred at pixel 0. This layer 1 cluster may then be 
combined with its six immediately neighbouring layer 1 
clusters, the centres of which are indexed as 10, 20, 30, 
40, 50 and 60, to form a layer 2 cluster centred at pixel 0 
(as shown in Figure 1); the remaining pixels in each of 
these layer 1 clusters are indexed in a clockwise direction 
in the same fashion as the layer 1 cluster centred at 0, 
(e.g., for the layer 1 cluster centred at 30, the pixel indices 
are 30, 31, 32, 33, 34, 35 and 36). The entire spiral 

MVA2013 IAPR International Conference on Machine Vision Applications, May 20-23, 2013, Kyoto, JAPAN4-24

129



addressing scheme is generated by recursive use of the 
clusters; for example, seven layer 2 clusters are combined 
to form a layer 3 cluster.  Ultimately the entire hexagonal 
image may be considered to be a layer L cluster centred at 
0 comprising L7  pixels. An important advantage of the 
spiral addressing scheme is that any location in the image 
can be represented by a single co-ordinate value, and 
hence the spiral image can be stored as a vector [6]. 
Spatially neighbouring pixels within any 7-pixel layer 1 
cluster in the image remain neighbouring pixels in the 
one-dimensional image storage structure. This is a very 
useful characteristic when performing image processing 
tasks on the stored image vector, and this contiguity 
property lies at the heart of our approach to achieve fast 
and efficient processing for feature extraction. 
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Figure 1: One-dimensional addressing scheme in the central region of the 
image 

 

2.2 Integral Spiral Image 
We introduce an integral spiral image, analogous to the 
traditional integral image approach in [9] for rectangular 
pixel-based images. As the spiral image S  is represented 
by a vector, the integral spiral image, denoted by I , is 
computed in the following way: 

)()( pSpI �   for pixel 0�p     (1) 

 )1()()( ��� pIpSpI   for pixel 0�p                (2) 

 
3. DESIGNING A CORE OPERATOR 

The key aspect of the integral image approach is that only 
one 7-point operator is required (the core operator) that 
can be applied at multiple scales using the integral spiral 
image presented in Section 2. To develop the core 7-point 
operator we need to consider only Layer 1. We use a 
regular mesh of equilateral triangles with nodes placed at 
the pixel centres (Figure 2(a)). With each node p we 
associate a piecewise linear basis function p� , with 

1�p�  at node p and 0�m�  at all other nodes pm � . 

Each p�  is thus a "tent-shaped" function with support 
restricted to a small neighbourhood of six triangular 
elements centred at node p (Figure 2(b)). We represent the 
spiral image by a function �

�

�
Qq

qqSS �)( , where Q 

denotes the set of all nodal addresses; the parameters 
	 
)(qS  are the image intensity values at the pixel centres. 
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Figure 2: (a) regular mesh of equilateral triangles with nodes placed 
at the pixel centres; (b) "tent-shaped" function  

 

Feature detection and enhancement operators are often 
based on first derivative approximations, and we consider 
a weak form of the first directional derivative 

SbbS ���� . To approximate the derivative over a 
layer 1 cluster centred on the pixel with spiral address p, 
the image derivative is multiplied by a neighbourhood test 
function p�  and the result integrated over a 

neighbourhood )(1 pN corresponding to the layer 1 cluster 
centred on pixel p. Hence at pixel p we obtain a 
directional derivative � �pD1  in any direction b  ( b is a 
unit direction vector) as  

� � � ����
)(

1
1 pN

p dSbpD �                             (3) 

Thus we may write 
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     (4) 
where 1H is the 7-point layer 1 hexagonal operator. We 

have chosen the neighbourhood test function p� to be a 

Gaussian function restricted to )(1 pN , centred on node p 
and parameterised so that 95% of its central cross section 
falls within )(1 pN . The operator 1H , shown in Figure 3, 
is then used as the core 7-point operator. 
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Figure 3: x- and y-components of operator 1H  
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4. BIOLOGICALLY-INSPIRED FRAMEWORK 

4.1 Simulating Eye Tremor 
Following the approach presented in [8] we consider the 
spiral integral image 0I  to be the “base” image, and we 
compute six further integral images, 6,...,1, �jI j , for the 
same scene. The location of the origin of each of these 
additional images is offset spatially from 0I by a distance 
of one pixel in the image plane along one of the three 
natural hexagonal axis directions. This mechanism 
simulates the phenomenon of “eye tremor”. In each 
image 6,...,1, �jI j , the pixel with spiral address “0” 
represents the same spatial location in the scene as the 
pixel with spiral address “j” in 0I . The “centre” (i.e., the 
pixel with spiral address zero) of each 
image 6,...,0, �jI j , is thus located at a pixel within the 
layer 1�� neighbourhood centred at the pixel with spiral 
address “0” in image 0I , as shown in Figure 4. 

 
Figure 4. The 7 image centres in the eye tremor approach 

 
Through use of the spiral architecture for pixel 
addressing, it is assumed that image 0I is stored in a one-
dimensional vector (with base-7 indexing). Using the 
spiral architecture the additional images 6,...,1, �jI j , are 
stored similarly. 
 
4.2 Non-Overlapping Convolution 
For a given image 0I , convolution of the operator 1H  
across the entire integral image plane is achieved by 
applying the operator sparsely to each of the seven images 

6,...,0, �jI j  and then combining the resultant outputs. 
Figure 5 shows a sample of pixels in image 0I for which 
the label 6,...,0�j  for each pixel indicates in which of 
the images 6,...,0, �jI j , the pixel address takes the value 
0 mod 7. Each pixel in image 0I  may be thus uniquely 
labeled.  

To implement the operator 1H using an integral 
image, we need to determine the cluster integrals )( icCI  
for the seven layer (�-1) clusters that comprise the layer � 
cluster. Here, the values of ic denote the centres of these 

seven layer as 1
0 10 ��� �isci  for 6,...,0�i . Using base 

7 addition [7], the layer (�-1) cluster integral value at ic  
is then calculated as (�-1) clusters. For a layer � cluster 
with centre 0s , the seven corresponding layer (�-1) 
cluster centres are computed  
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Figure 5. Pixel positions in image 0I corresponding to pixels in images 

6,...,0, �jI j  with address 0 mod 7. 
 

as 1
0 10 ��� �isci  for 6,...,0�i . Using base 7 addition 

[7], the layer (�-1) cluster integral value at ic  is then 
calculated as  

)106()(
1

0
�
�

�

�
�

k

k
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�
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The operator at scale �, applied to a layer � cluster, is 
implemented by convolving a core 7-point operator with 
the cluster integral values )( icCI  for the seven 
corresponding layer (�-1) clusters with centres ic , 

6,...,0�i  such that 

� � )()(
6

0
1 i

i
i cCIcHsD ���

�
�                  (7) 

Having applied the core 7-point operator to each of the 
integral images, we combine the outputs to form a 
complete edge map. In terms of implementation using the 
one-dimensional vector structure for the 
images 6,...,0, �jI j , each output response 

6,...,0, �jD j
� is stored in a one-dimensional vector with 

non-empty values corresponding to the array positions 
with indices 0 mod 7. These one-dimensional vectors may 
then be assembled according to the “shifted” structure as 
illustrated in Figure 6: 

	 
 )()(   ,7  0 000 sDksEmodsss k
�� �����   

for 6,...,0�k , to yield the consolidated output 
image 00 )( IHIE �� �� as  shown in Figure 7. 
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0
�D :  0       10       20       30       ...       
1
�D :  0       10       20       30       ...      
2
�D :   0       10       20       30       ...     
3
�D :    0       10       20       30       ...    
4
�D :     0       10       20       30       ...   
5
�D :      0       10       20       30       ...  
6
�D :       0       10       20       30       ... 

Figure 6.  Assembly of the one-dimensional vectors 6,...,0, �jD j
�  

 

Figure 7.  Consolidated output image resulting from assembly of the vectors in Figure 6 

 
5. PERFORMANCE EVALUATION 

We present results for our proposed hexagonal integral 
image combined with the biologically motivated approach 
in [8] in comparison with the original approach in [3], and 
with standard convolution of an operator with a spiral 
image where the pixel neighbour addresses are stored in a 
look-up table (this takes 0.4017s to generate, but is 
significantly faster than standard hexagonal addressing, 
which requires mod 7 arithmetic). Figure 8 presents edge 
maps obtained by applying a 49-point operator [3] 
directly to a standard spiral image and the 7-point 
operator to hexagonal integral images at scale �=2.  The 
visual results are similar, whilst there is a notable speed-
up in average runtime measured over a set of 10 images, 
as shown in Table 1. In fact, when using the integral 
images, applying the 7-point operator at any scale � will 
also take only 0.1008 seconds, as each convolution 
requires only 7 subtractions and 7 multiplications. Hence 
the technique based on the use of spiral integral images 
maintains low computational complexity as scale 
increases. In contrast, 343 multiplications per convolution 
are required by the other two approaches when �=3, 
increasing by a factor of 7 for each increase in scale.  
 
Table 1. Average algorithm run-times 

 
6.  CONCLUSION 

We present a novel hexagonal integral image that can be 
combined with a biologically motivated approach (eye 
tremor) to speed up feature extraction.  We have 
demonstrated that the approach of applying a core 7-point 
operator to the spiral integral image at various scales is 
significantly faster than applying scaled operators to the 
original image, as we require only 7 subtractions and 7 

multiplications to generate each output value regardless of 
the scale at which the operator is applied.  
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Figure 8: (a) 49-point operator applied using Spiral approach; (b) 7-
point operator applied using integral eye-tremor approach 
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Method Run-time  
Integral Image Approach  0.1008s 
Biologically motivated “eye tremor” 
approach 

0.1399s 

Spiral convolution using LUT 0.2191s 
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