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Abstract

Automated vision-based systems have been suggested
for complementary monitoring in Intensive Care Units
(ICU) due to their ability to detect behavioral cues used
in sedation delivery and accident detection. However,
data acquisition is a major limitation: single-camera
systems are reliable but not very capable where com-
plex systems are unable to work unattendedly. This
has prevented the development of complex behavioral
analysis algorithms. In this paper we present a Med-
ical Recording Device (MRD) developed for long term
ICU monitoring, including three major vision compo-
nents: stereo, depth and hi-res, together with a num-
ber of secondary sensors. Unlike current approaches
which require controlled environments, image markers
and optimal lighting conditions, the MRD is capable of
registering behavioral cues autonomously regardless of
the environment conditions.

1 Introduction

Determining a correct sedation protocol for Intensive
Care Unit (ICU) patients is a complex and individual-
ized procedure. Excessive sedation can be dangerous
while insuficient sedation increases the risk of excessive
anxiety and agitation. The process is iterative and de-
pends on the patient feedback, but common vital signs
monitored in ICUs are not enough by themselves; be-
havioral cues, which are annotated by the nursing staff,
need to be considered too.
Therefore Computer Vision (CV) systems had been

suggested to avoid the undesirable subjective nature
of those behavioural annotations by providing strong
objective measurements. The most used behavior cue
is agitation [4], as it is meaningful, robust to occlu-
sions, and easy to measure, but other considered cues
are: facial changes [2, 8], awaken/sleep state [11] and
breathing patterns [1, 9].
Accident detection is the second main use of CV sys-

tems in ICU’s [6]. Disoriented patients can hurt them-
selves inadvertently. While the most common event is
simply falling, Accidental Catheter Removal [7] (ACR)
is common and can have severe consequences if it not
detected quicky by the staff.
Although there have been some CV attemps at those

problems in the past, they mostly deal with synthetic
benchmarks [2, 4, 8, 11]. The longest field test [6] (6
days, 1 bed) failed to record any accident and there-
fore accident detection was evaluated in a simulated
scenario.
Those short field tests and simulated scenarios fail

to sample the extreme diversity of conditions that hap-
pen in ICU rooms. Accidents are, luckyly, very rare

Figure 1. The Medical Recording Device moni-
tors the patient and the ICU environment. Stereo
and depth cameras cover the entire body, while
a hi-res camera covers the face.

(the mean ACR rate has been observed of 1.5 per 100
days [7]). To overcome this scarcity of events, obser-
vational studies are lengthy, with monitoring periods
as long as 300000 hours (around 2000 patients) not
unusual [7].

The lack of a CV corpus of this magnitude hin-
ders the development of advanced CV algorithms, and
makes the evaluation of current approaches impossible.

In this paper we present a novel system for auto-
mated CV monitoring of ICU rooms, with the goal of
long-term data recording. The resulting dataset will
be used to develop and evaluate behavioral algorithms
that could be of assistive use for sedation control and
accident avoidance.

The capabilities of the system were tested on current
ICU challenges, and their autonomy and robustness
were throughly evaluated before installing them in an
hospital.

2 The Medical Recording Device

A data collection of this magnitude has several chal-
lenges: it must be secure, robust and ethical. But at
the same time must be autonomous and adjust au-
tomatically to the varying conditions: lighting, noise,
occlusions, sleeping positions, etc.

Finally, a dataset is useless if the correct data modal-
ity is not captured. From our analysis of the previous
work, we see that some systems require a single cam-
era [6] while stereo cameras are used in several action
recognition frameworks [12]. Depth cameras based on
Kinect are increasingly being used [10]. Finally the
field of view (FoV) recorded is also crucial. Although
some systems use only face information [2, 8, 11], our
medical advisors suggested us to monitor the full body
as in [6]. We decided to monitor all information we
found possible while keeping a low profile, which is an
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important factor as the monitoring system should be
unobstrusive in order to not interfere with the normal
ICU enviroment.
We designed our Medical Recording Device (MRD)

around three main vision systems: One stereo cam-
era, one depth camera, and one camera for face analy-
sis. The MRD is meant to work during day and night,
therefore all cameras capture only infrared images. A
coupled IR illuminator is attached to the device, and
a control and communications center manages all de-
vices and sends the information to the file server using
a single Gigabit Ethernet link. Secondary sensors are
provided to capture several environmental conditions
and complement the monitoring task.

2.1 Architecture

The Stereo and Face cameras are USB cameras
provided by Ecomunicat Electronics, allowing raw ac-
cess to the image sensors. Stereo camera images are
downsampled to QWVGA@10fps to save bandwidth,
and the face camera is a 1.3MP model configured as a
flying Region of Interest to follow the face in realtime
and capture it at 256x256@50fps.
The Depth camera is based on Kinect, and it is

configured at VGA@30fps.
The Control and Communications Center: A

1.2GHz Marvell Kirkwood processor (based on ARM)
was selected as it was designed for efficient USB to Gi-
gabit Ethernet transfers. The chosen operative system
was Debian Linux. PC based systems were ruled out
for budgetary and ambiental reasons.

2.2 Low-profile

The monitoring must not hinder the normal func-
tioning of the ICU, therefore modifying the environ-
ment, adding markers or using custom colored cloth-
ing was strictly forbidden. The MRD itself is packaged
as a single box of 192x210x62mm. However IR illumi-
nator is placed externally to avoid overheating. As a
long term monitoring solution, it was designed to be
easy to maintain, and the full system is attached using
an standard Vesa mount allowing simple cleaning and
replacement.
Finally the visual profile was also reduced by hiding

all cameras behind an IR-bandpass filter, as it is known
that visible cameras can increase the anxiety to the
recorded subject.

2.3 Robustness

The MRDs have been tested against a series of phys-
ical and technical threats. The software running in the
MRD deals with communication problems: hot plug-
ging, network congestion, data corruption, etc. It also
manages all sensors, monitoring their status, restart-
ing them if required, altering the parameters to adapt
to the current environment, etc. Finally it continu-
ously checks the system integrity including disk, time
synchronization and checking for upgrades.

2.4 Performance

As the MRD is mainly a data transmission system,
most performance problems deal with data through-
put. Memory interfaces in embedded processors are

several orders of magnitude slower than PCs. There-
fore custom drivers for the USB cameras and Kinect
were developed where unnecessary active memory
transfers were avoided and using DMA channels where
available. The communication protocol was designed
in parallel to even further minimize memory transfers.

2.5 Storage limitations

Figure 2. Hybrid lossless/lossy compression
achieves a ratio of 21:1.

The artifacts caused by lossy video compression al-
gorithms are designed to be barely perceptible to the
human eye, but some Computer Vision algorithms are
susceptible to them and thus its use is discouraged.
However, the uncompressed data rate of a MRD is
around 16.5MB/s, which equals to around 1.4TB/day.
Storing a dataset of around 300000 hours would use
16.5 PetaBytes: equivalent to 26 full-size racks of stor-
age servers even without considering backups. Lossless
algorithms do not provide a significant improvement as
their compression rate is small (around 3:1). Knowing
that in most cases there is almost no motion in ICUs,
we developed a hybrid lossless/lossy compression al-
gorithm that compresses images in one second packs,
storing one lossless image and several lossy images per
pack using inter-frame compression. When the system
detects activity in the image, it switches to a full loss-
less compression system. In our experiments we obtain
a compression rate of 21:1 using our compression sys-
tem to achieve a global rate of 800KB/s (Fig. 2).

2.6 Privacy

Privacy is a great concern when dealing with medi-
cal data, and it covers the patient as well as the ICU
staff. Therefore we have several mechanisms in place
in order to preserve privacy. Including filesystem and
communications encryption.

The suggested procedure to deal with private events
(such as when the patient is being washed), is to turn
off the visual recordings using a remote control. Alter-
natively there is a 3 days safety buffer where the ICU
staff can mark a sequence as compromised, and will be
not be permanently stored.

3 Multi-Camera Calibration

A tool was designed to simplify the multi-camera
calibration procedure by calibrating all the cameras
simultaneously. Once the procedure has started, a cal-
ibration pattern is placed firmly in the field of view
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of the system, then we take a snapshot using the re-
mote control. The snapshot takes a few seconds as all
cameras activate iteratively setting themselves at max-
imum resultion and adjusting to the best ratio of gain
and exposure before taking the picture. The Kinect is
configured first as a IR camera to capture the pattern,
and then switches to depth to capture a disparity im-
age. When the sequence finishes the computer notifies
the user and the calibration pattern can be moved to
the next position. This method allows the system to
be recalibrated in-place in less than 5 minutes. The
snapshots are used to get the intrinsic parameters of
all the cameras using [14]. To get the extrinsic param-
eters, the face camera acts as the master, and the other
cameras are pairwise calibrated to it.
By using Kinect IR image for extrinsic calibration,

we avoid the complexity of novel depth-to-color cali-
bration methods like [5].

4 Face camera and Head Detection

Figure 3. The face camera allows to record hi-res,
hi-speed images of the face.

The most important information we can get about
the behavior of a person lies in his face. However, al-
gorithms like facial grimacing recognition [2] require
high resolution images, while microexpression recogni-
tion requires a medium-high framerate [3].
The face is not in a fixed position in the FoV,

but sending the full FoV image at high framer-
ates is not possible due to bandwidth constraints
(1.3MP@50fps=62.5MB/s).
Pan-and-tilt cameras are not advisable as they are

larger, noisier, and its calibration is less precise than a
fixed camera.
We resolved to use a fixed camera with a FoV cov-

ering all the scene, but configured with a flying ROI of
256x256@50fps that is actively aimed at the face. This
limits the bandwidth requirement to 3.125MB/s.
The ROI is aimed by triangulating the face position

as detected by the stereo cameras, and projecting the
3D position into the image plane of the face camera
(see Fig. 3).

5 Framework

The main idea behind the MRD is to fuse the in-
formation from multiple image sensors to improve en-
vironment awareness. To this end we have developed
a camera fusion framework. It allows us to project
data from one camera to another, triangulate objects
to estimate its 3d position, and analyze the scene as a
pointcloud.
The user interface of the framework is 3d enabled,

and using a 3d mouse it is possible to navigate through

the environment and thus simulate virtual point of
views of the scene, as shown in Fig. 4.

6 Performance Evaluation

Figure 5. We can simultaneously visualize images
from the all sensors alongside debugging informa-
tion. Note the accurate detection of the bed in
the depth field (blue mask).

Figure 6. This sequence simulates 4 scenarios.
10s-60s: Sleeping relaxed shows an almost flat
bed occupancy indicator and low agitation levels
in the face. 70s-110s: Sleeping with pain expres-
sions is not reflected in the volumetric informa-
tion, but it is detected by the face agitation levels.
120s-145s: Being restless in bed is reflected by
an clear response in both indicators. 145s-200s:
Strong compulsions ending with an accident and
sudden loss of consciousness.

We evaluate the performance of the MRD and the
Framework on current ICU challenges to ensure that
the device will record relevant data for the develop-
ment of future algorithms. To detect the bed position,
we assume it is roughly centered in the field of view,
and we estimate the bed plane by region growing from
the depth map, results of the obtained ROI can be seen
in Fig. 5. Then two indicators are extracted from the
image information: the bed occupancy indicator is esti-
mated from the depth camera and is a rough indicator
of the volume over the bed. It can be used to detect the
events corresponding to entering and exiting the bed,
body agitation and even breathing. The second indi-
cator used is the face agitation, which is obtained from
the face camera. Each image is resized to 32x32 pixels
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Figure 4. The framework and integrated interface allows us to navigate through the environment in 3d.

and then Bayesian Surprise is calculated using a Gaus-
sian window of mean 25 frames (500ms). Bayesian
Surprise has been used to detect salient events [13],
and the face agitation indicator displays activity when
the patient shows discomfort.
Results of this detectors can be seen in a short sim-

ulated test in Fig. 6, there we aimed to register the
behavior of the scene using both indicators.
Due to the subjective behavior of the measurements

and the lack of a public database or even a common
methodology for evaluation, it is not possible to di-
rectly compare our results to alternative approaches.
We focused instead on showing how a reasonable be-
havioral description of an scenario can be obtained in a
non-invasive way, without using markers, and is robust
to changes in illumination. In this regard our approach
proves to be superior to state of the art systems [2,4,6].

7 Conclusions and Future Work

We have shown a monitoring system for ICUs de-
signed to capture a long term multimedia data set for
behavioral analysis. We have described several prob-
lems associated with long term medical monitoring,
and a set of possible solutions to them.
The combination of multiple vision modalities on our

Medical Recording Device will allows us to work with a
large variety of ICU monitoring algorithms, as we will
have data of the whole body of the patient, high speed
and high resolution data of the patients face, and a
depth data provided by Kinect. To show the effective-
ness of the system we implemented a simple algorithm
that provides indicators for bed occupancy and face ag-
itation. These indicators can be obtained regardless of
the illumination conditions and without human inter-
action, and are used to register a continuous behavioral
profile of the monitored patient.
Once the dataset is available, we plan to use it to

develop accident detecting algorithms and advanced
behavior recognition algorithms able to better aid in
ICU rooms.
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