
Improved Color Barycenter Model for Road-Sign Detection

Qieshi Zhang and Sei-ichiro Kamata
Graduate School of Information, Production and Systems

Waseda University, Japan.
Q.Zhang@Akane.Waseda.jp, Kam@Waseda.jp

Abstract

This paper proposes an improved color barycenter
model (CBM) for road sign detection. The previous
version of CBM can find out the colors of road-sign
(RS), but its accuracy is not high enough for magenta
and blue region segmentation. The improved CBM ex-
tends the barycenter distribution to cylinder coordinate
and takes the number of colors in every point into ac-
count. Then the K-means clustering is used to ana-
lyze the distribution under cylinder coordinate. Using
Geodesic distance instead of Euclidean distance for K-
means clustering and some conditions provided by the
initial color region of CBM is used to constrain K-
means operation. The experimental results show that
the improved method is able to detect RS with high ro-
bustness.

1 Introduction

The research of road-sign (RS) detection becomes
important for driver navigation, recently. Because it
can regulate traffic and indicate road situations for
guidance and warning. The detection of RS is impor-
tant in driver assistance system (DAS). For example, if
drivers disregard the temporary stop sign or the speed-
limit sign, accidents may happen. The framework of
DAS was first introduced by Arnoul et al. [1], which
gives the required functions of DAS. Although the DAS
is a good way to avoid much neglect, the detection of
RS is not easy from videos directly, due to the unknown
changes of driving environment conditions.
Many researchers have been devoted themselves to

solve this problem [2] by considering the RS with
stronger features, such as high contrast, bright colors
and fixed shapes. In recently years, the color based
methods become popular, some of these methods are
desired under different color spaces, in which RGB
space is widely used. Based on this color space, Es-
tevez and Kehtarnavaz [3] threshold the redness pixels
by the difference of R with the connection of G&B.
Fang et al. [4] use the Neural Network (NN) to ex-
tract the color and shape feature in RGB color space.
After that, Zhang et al. [5][6] propose original color
barycenter model (CBM) and analyze the barycenter
distribution in hexagon region to analyze the color fea-
ture through the RGB color space conversion. Another
most frequently employed space is HSI. Liu et al. [7]
present a pseudo RGB-HSI conversion method without
nonlinear transform to extract different color. Beside
the RGB and HSI space, HSV [8], HLS [9], YIQ [10]
and YUV [11] are also be used for RS detection.
However, these kinds of methods are sensitive to the

lighting condition. Moreover, the existing color anal-
ysis based methods only try to find one component of
3D color space and segment it. In this paper, to over-

come the limitations of the existing color space based
methods and detect the color feature more effectively,
the original CBM is extended to cylinder coordinate
for acquiring more accurate segmentation result.

2 Proposed Method

Although the barycenter distribution of CBM in
rectangular coordinate system (RCS) can be used in
different conditions by the segmentation strategy [5][6],
it ignores to analyze the influence of the number of
barycenter in same positions. Fig. 1 shows an example
of real scene and its corresponding barycenter distri-
bution in polar coordinates system (PCS) and RCS,
respectively. Fig. 1(d) shows the result separated by
seven regions as M (Magenta), R (Red), Y (Yellow),
G (Green), C (Cyan), B (Blue), and L (Luminance).
Considering the characteristic of the barycenter dis-
tribution and K-means clustering, the constrained K-
means clustering method is studied to clustering the
barycenter distribution to replace the curve based lin-
ear segmentation [Fig.1(c)].

2.1 CBM Extension — Cylinder Coordinate

In this subsection, the CBM is extended to cylin-
der coordinate from PCS to overcome the shortage of
original model [5] by following steps.

1. Create color triangle as [5] described by converting
the RGB color space into three 2D points and con-
nect them. The coordinates of three color apexes
are: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(Rx,Ry) = (0,Rv)

(Gx,Gy) =
(
−
√

3Gv
2 ,−Gv

2

)

(Bx, By) =
( √

3Bv
2 ,− Bv

2

) , (1)

where the Rv, Gv, and Bv are the original value of
pixel color.

2. Define the coordinate of color barycenter (Cx, Cy)
as Eq. (2): {

Cx =
1
3 (Rx +Gx + Bx)

Cy = 1
3 (Ry +Gy + By)

. (2)

3. Calculate all barycenters of image and describe
them in a hexagon region in PCS as shown in
Fig. 1(a).

4. Expand the distribution from the origin in PCS
into RCS as shown in Fig. 1(c). In the RCS, the
coordinate of color barycenter is converted from
(Cx, Cy) to (ϕ, r):⎧⎪⎪⎨⎪⎪⎩

ϕ = Cy/Cx

r =
√

C2
x +C2

y
, (3)
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(a) Original image (b) Barycenter distribution in PCS

(c) Barycenter distribution in RCS (d) Segmentation Result

Figure 1. The barycenter distribution of original
color barycenter model [5][6].

5. Roll up the distribution in 2D RCS to cylinder to
create the cylinder coordinate system (CCS), in
order to connect all color regions continuous. The
coordinate in CCS is (x, y, z), which is calculated
by (ϕ, r): ⎧⎪⎪⎪⎨⎪⎪⎪⎩

x = sin(ϕ)
y = cos(ϕ)
z = r

, (4)

where ϕ and r indicate the offset and intensity of
color, the radius of cylinder is set to 1. Based on
this conversion, all the barycenters are converted
into the surface of cylinder as shown in Fig. 2(d).

After these steps, the distribution of color barycenter is
converted onto surface of cylinder to keep the relation
of color more accurately. Then, considering the in-
fluence of number of every barycenter, the constrained
K-means is studied to cluster the color barycenters into
seven clusters for segmentation.

2.2 CBM Distribution Constrained K-means

In this paper, the prior knowledge of color distribu-
tion region is used as the constraint. The colors should
be separated into 7 regions, one is the gray region (L)
to show the achromatic information, and the other 6
regions are the color region to show different major col-
ors. In practical, the captured color of RS usually has
little offset with real color because of the various envi-
ronments or different capture device, so it will offset in
the boundary region with π/12 of corresponding color
region.
In our constrained K-means algorithm, all the

barycenters are on the surface of the cylinder, so the
Euclidean distance is not suitable here. Here, we as-
sume the cylinder surface is a low dimension Manifold,
and define the Geodesic distance in the surface. By
observing the characteristic of the cylinder surface, the
distance should be the arc from point p to q as the red
curve shown in Fig. 2(c). Consider the point coordi-
nate in the CCS is (x, y, z), so the Geodesic distance

is defined as Eq. (5):

G dis (p, q) =
√
|zp − zq|2 + arc2

2D(p2D, q2D), (5)

where arc2D is the length of arc from points p2D to q2D
in the circle of undersurface as the orange curve shown
in Fig. 2(c) which calculated by Eq. (6):

arc2D (p2D, q2D) =

∣∣∣∣∣∣arctan
(
yp

xp

)
− arctan

(
yq

xq

)∣∣∣∣∣∣ . (6)

Here, the initial region Regk of all clusters is defined
as:

Regk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x = sin(ϕ), ϕk−1 < ϕ < ϕk;
y = cos(ϕ), ϕk−1 < ϕ < ϕk;
z = r, 0 ≤ r ≤ 85.

(7)

In the Eq. (7), the k ∈ K is the index of current cluster,
ϕk−1 and ϕk are the boundary of Regk. In this paper,
ϕk is set by {ϕMR < ϕRY < ϕYG < ϕGC < ϕCB < ϕBM},
which defined in above section. The pseudocode of this
procedure is given in Algorithm (1).

Based on the improvement of constraint with the
cylinder coordinate of color barycenter distribution,
the clustered result is shown in Fig. 2(d) and the
obtained segmentation result is shown in Fig. 2(e).
Fig. 2(a) and (b) are the cluster result in PCS and
RCS, respectively. These results show the perfor-
mance of the constrained K-means. Comparing the
segmentation result of improved CBM [Fig. 2(d)] with
the barycenter distribution in RCS and in PCS [5]
[Fig. 1(c)], the improved CBM can obtain more ac-
curate result.
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p(xp, yp, zp)

q(xq, yq, zq)

p2D(xp, yp)
arc2D(p, q)
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(c) Geodesic distance in CCS�

(d) Barycenter distribution in CCS�

(e) Segmentation result by (f)�

(a) Barycenter distribution in PCS� (b) Barycenter distribution in RCS�

Figure 2. Color barycenter distribution in PCS,
RCS, CCS and segmentation result of Fig. 1(a).
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Algorithm 1 Constrained K-means Algorithm.

Input:
X = {x1, · · · , xN} ∈ R

D (N × D input data set),
C = {c1, · · · , cK} ∈ R

D (K cluster centers).
1: Cluster centers C ∈ X initialization: calculate the

geometric center ck of the default color region Rk
as the initial cluster centers.

2: while termination criterion is not met do
3: for (i = 1; i ≤ N; i = i + 1) do
4: Assign xi to the nearest cluster;
5: m[i] = arg min

k∈{1,···,k}
G dis (xi − ck), Eq. (5);

6: end for
7: Recalculate the cluster centers;
8: for (k = 1; k ≤ K; k = k + 1) do
9: Cluster S k contains the set of points xi that

are nearest to the center ck:
10: S k = {xi|m[i] = k};
11: Calculate new center ck as the mean of points

that belong to S k:
12: ck =

1
|S k |

∑
xi∈S k

xi;

13: Judge if the current cluster center ck in the
corresponding region Rk:

14: if ck � Rk then
15: if ϕck < ϕk−1 then
16: xck = sin (ϕk−1);
17: yck = cos (ϕk−1);
18: end if
19: if ϕck > ϕk then
20: xck = sin (ϕk);
21: yck = cos (ϕk);
22: end if
23: else
24: continue;
25: end if
26: end for
27: end while
Output:

C = {c1, · · · , cK} ∈ R
D (K cluster centers),

Idx = {idx1, · · · , idxN} ∈ R
D (N × D output index

set).

3 Experimental and Discussion

3.1 RS Candidates Extraction

Based on the above strategy to separate the color
region of RS, the RS candidates can be detected. After
that, some simple geometric property based filtering
is used. As the RS can be circular, rectangular or
triangular, the following three criteria are used to filter
out the impossible candidates:

1. The first criterion is size of RS. It requires the area
of RS candidates in the range as Eq. (8)

AminWRS HRS < AreaRS < AmaxWRS HRS , (8)

where AreaRS is the area of RS candidate. WRS and
HRS are the width and height of RS, respectively.
By analyzing several different sizes of RS in the
test video (640 × 480), we have found that if the

candidate size is smaller than 12 × 12 pixels, it is
difficult to be observed. And no matter how long
the distance is, the size of RS cannot be larger
than 50×50 pixels, so the minimum size coefficient
Amin set as 0.0005 and maximum size coefficient
Amax set as 0.008.

2. The second criterion is aspect ratio. It requires
the RS candidates to satisfy the ratio as:

min
(

HRS

WRS
,

WRS

HRS

)
> AR, (9)

which AR is the aspect ratio, and for circular, rect-
angular, and triangular the ideal ratio is AR = 1,
but in fact it always has some shift. For deciding
AR threshold, we select 50 detected RS random
and get the statistics to set AR as 0.86. As a result,
the noises and some wrong candidates have been
eliminated. However, some regions, which have
the same size and shape of real RS are selected
by mistake. So to remove these wrong candidates,
the color ratio is necessary.

3. The third criterion is color ratio. To decide the
color ratio, we calculate the color percentage in
the standard RS block. Based on the color ratio,
we consider the influence of colorcast and fade,
and let the error with 15% of standard RS be
accepted. If one of the criteria is satisfied, it
will be accepted by the following color percent-
age: Red∈ [31.6%, 65.1%], Blue∈ [20.9%, 68.5%],
and Yellow∈ [23.4%, 45.8%].

After filtering by these criteria, the final detection re-
sult can be obtained. More examples and comparisons
are described in experiment.

3.2 Experimental Results and Discussion

In this section, several experiments are given to
verify the efficiency and robustness of the proposed
method. For evaluating the results, the accuracy and
the detected results with other methods are compared.

In this experiment, the results indicate that the pro-
posed method can be used to detect RS in blurred and
weak light conditions. Fig. 3 shows an example in
sunny and Figs. 4 and 5 show the detection results
with a signal and two signs in real situations (differ-
ent size/distance in one scene). In these figures, some
reference methods are used for comparison, and the re-
sults are shown in Table 1. Results show that the pro-
posed method is robust under different size and light.

4 Conclusion

In this paper, the cylinder expression based exten-
sion of the original CBM is presented. And the con-
strained K-means is proposed to segment the CBM
cylinder distribution for RS detection. The improved
segmentation strategy can overcome the shortage of
existing color analysis based method. And the experi-
mental results show that the proposed method achieve
good performance under different environments.
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(a) frame 6� (b) frame 12� (c) frame 18� (d) frame 24� (e) frame 30�

Figure 3. RS detection in sunny, 640 × 480, 15 fps, 32 frames.

(a) frame 9� (b) frame 20� (c) frame 31� (d) frame 42� (e) frame 53�

Figure 4. RS detection for multiply signs, 640 × 480, 15 fps, 55 frames.

(a) frame 10� (b) frame 22� (c) frame 34� (d) frame 46� (e) frame 58�

Figure 5. RS detection for multiply signs, 640 × 480, 15 fps, 60 frames.

Table 1. Detection Results (640 × 480, 15 fps, 12 video sequences, 631 frames with 1012 RS).

No. Proposed Reference [5] Reference [10] Reference [12] Reference [13] Reference [14]

Detected 953 (94.2%) 848 (83.8%) 706 (69.8%) 797 (78.8%) 830 (82.0%) 852 (84.9%)

Wrong detected 61 (6.0%) 82 (8.1%) 136 (13.4%) 124 (12.3%) 119 (11.8%) 120 (11.9%)

Not detected 103 (10.2%) 204 (16.2)% 306 (16.2%) 215 (21.2%) 182 (18.0%) 170 (15.8%)
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