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Abstract

Minimal user interaction in coronary artery cen-
terline extraction is important for computer aided sys-
tem in Coronary Artery Disease detection. However,
manual seeding leads to error propagation most of the
time. In this paper, we propose a neighbourhood search
feedback mechanism in centerline tracking to overcome
this problem. Two contributions from this paper are:
(1) Seed Point Optimization where the defined seed
point is optimized before tracking is initialized and (2)
Backward-Forward Correlation Verification to verify
the points before propagate in the tracking process. We
evaluate the proposed method using publicly available
dataset and demonstrate the results quantitatively and
qualitatively. The experimental results demonstrate the
reduction in error propagation by our proposed method
compare with the method without feedback mechanism.

1 Introduction

Heart diseases are among the leading causes of death
in the world, especially in developed countries and the
Coronary Artery Disease (CAD) is the one that com-
prise the largest proportion. CAD is due to the oc-
currence of athesclerotic plaques in the coronary ar-
teries and coronary artery calcification is part of the
development of athesclerotic plaques which progres-
sively narrow the arterial lumen and affect normal
blood flow [1]. Conventionally, the standard diagnos-
tic of CAD is employing invasive angiography which
put patients in high risk and the diagnostic is very
costly. Recently, non-invasive Computed Tomography
Angiography (CTA) has been widely used to diagnose
CAD. The motivation of this work is to provide a tool
which assist radiologists or cardiologists in detecting,
grading and classified the stenosis from CTA.
There are several CTA visualization techniques used

in clinical practice for coronary artery visualization,
such as volume rendering, Maximum Intensity Projec-
tions (MIP) and Curved Planar Reformation (CPR).
These techniques assist in analysis of vessels’s con-
dition, stenosis grading and classification for surgical
planning. Thus, obtaining a reliable coronary artery
centerline for CTA visualization is crucial.
There are many coronary artery centerline extrac-

tion algorithms proposed in [2], [3] and evaluated by
standard framework [3]. The methods are categorized
into automatic seeding and manual seeding. For au-
tomatic seeding [4], the aorta detection is required to
detect arteries’s root as seed point for tracking. How-
ever, there are risks of fail in vessel tracking if unable
to locate the roots. Therefore, we decide to investigate

manual seeding initialization. In this paper, in order
to ease the seed point’s initialization process, we use
only one start point (i.e. proximal of vessel) per vessel.

Coronary artery centerline extractions are classified
into skeleton-based and tracking-based approaches.
Segmentation of vessel required for skeleton-based then
morphology operations are performed to obtain the
centerline. While tracking-based approach traces the
vessel centerline without segmentation required. Our
proposed method aims to investigate toward tracking-
based approach to reduce the challenge from vessel
segmentation. Minimum cost path algorithm is the
most popular class in coronary artery centerline extrac-
tion. [5] and [6] extract the coronary artery centerline
using minimum cost path function and show promising
results. However, there are still minimum numbers of
cases where the method failed in vessel tracking due to
the challenges. The challenges of extracting coronary
artery from CTA images are mentioned in paper [7].

Due to these challenges, the vessels tracking will
fail when error propagated during tracking process.
Learning-based approach was proposed in [8] to re-
duce errors; however the training process requires high
computational power and a training model. Thus,
we investigate a different concept which uses feedback
mechanism to reduce error without training stage and
model required. In this paper, we proposed a method
of coronary artery centerline tracking with neighbour-
hood search feedback mechanism after seed point op-
timization.

In our evaluation part, two measures: the capabil-
ity to track the vessel of reference standard (Ω1) and
average distance error (Ω2) are calculated to evaluate
the results quantitatively. The two measures are com-
pared against the measures from method without feed-
back mechanism. Besides, we demonstrate our finding
qualitatively in the experimental results section.

2 Methodology

The proposed method aims to overcome the prob-
lem of error propagation in vessel centerline tracking
which caused by initial seeding and ineffective track-
ing solutions. The key notion is to provide a feed-
back mechanism in the likelihood function as a self-
optimization algorithm. In all tracking-based vessel
centerline tracking methods, three tracking factors are
considered: traversing direction, jumping distance and
vesselness value [9]. In our proposed method, we ap-
ply neighbourhood search as the traversing direction
and jumping distance to track the next candidate by
matching the vesselness correlation of proximity.
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2.1 Image Preprocessing

Image preprocessing is performed to enhance the
vessel’s region and ensure that the vessel’s property
is robust for tracking process. The image preprocess-
ing consists of two steps: 1) Vessel Enhancement and
2) Piecewise Segmentation.

2.1.1 Vessel Enhancement

The purpose of this step is to enhance the boundary
of the contrast regions with the ultimate goal of ves-
sel delineation. In CTA, vessels appear as bright 3D
tubular structures surrounded by darker environment
caused by the contrast agent which injects to patients.
This prior information projects spherical or elliptical
contrasted regions on each image planar. The second-
order partial derivative of Gaussian image (G),

G” =

[
Gxx Gxy

Gyx Gyy

]
(1)

describes the second-order structure of local intensity.
Thus we apply the Laplacian of Gaussian (LoG), trace
of matricG” to sharpen the regions of interest i.e. coro-
nary arteries. The output from convolution of the im-
age, I with LoG is given by:

V (x, y) = LoG ∗ I(x, y). (2)

2.1.2 Piecewise Segmentation

As aforementioned, the blood vessels are surrounded
by dark background on images, the main objective
of this step is to eliminate the vessels from dark
background. Besides, calcification in vessels appear
similar with bone structures, we solve this problem
by normalizing the vessel property with two defined
threshold values, Non-artery threshold value, TNA and
Confident-artery threshold value, TCA. The output de-
fined as:

V
′

(x, y) =

⎧⎨
⎩

1 V (x, y) < TCA
V (x,y)−TNA

TCA−TNA
TCA ≤ V (x, y) ≤ TNA

0 Otherwise
(3)

V(x,y) less than 0 denote blood pool regions. Thus,
we define TCA = -900 as the lower bound of V(x,y)
and TNA = 30 as the upper bound of V(x,y) to extract
vessels regions.

2.2 Centerline Tracking

We propose a method which applies a neigh-
bourhood search to track the next candidate from
previous point and a feedback mechanism by
matching correlation of proximity. Given a vol-
ume of processed image, V

′

(x, y, z) where z re-
fer to the slices, the algorithm start with a seed
point, S to generate a set of tree points, Ti =
{T0(x, y, z), T1(x, y, z), T2(x, y, z), . . . TK−1(x, y, z)}; K
is the number of tree points.

2.2.1 Proximity for Neighbourhood Search

One of the challenges in vessel’s centerline tracking
is the disturbance from structures proximity. Thus,

defining an adequate proximity for neighbourhood
search is crucial in order to reduce surrounding noises.
In this paper, we introduce three proximity radius
for different purposes: 1) Vessel proximity radius, RV

which generally used for neighbourhood search, 2)
Non-vessel proximity radius, RNV which is incorpo-
rated in tracking loop as stopping criteria and 3) Turn-
ing proximity radius, RT which determine the tracking
direction. From the empirical tests, we conclude that
RNV must be 2 × RT and RT must be 2

3 × RV . Thus,
we fix RV as 6 pixels length for low resolution dataset
and 8 pixels length for high resolution dataset.

2.2.2 Seed Point Optimization

The optimization of seed point location is crucial in
order to reduce possibility of error propagation from
initial defined seed point. The seed point optimization
is based on the assumption where vessels center pixel
intensity is always higher than the surrounding pixel’s
intensity. Given a defined seed point, S, the optimized
seed point,

OptS = argmax(bV
′

N (x, y, z)) (4)

where b indicates the binary value corresponds to fore-
ground (b = 1) or background (b = 0); N refer to the
number of neighbourhood pixels within the circle prox-
imity which centered by S with radius, RV (defined in
previous section). To initialize the tracking loop, OptS
is assigned as the first vessel’s tree point, T0(x,y,z).

2.2.3 Minimum Cost Path Approximation

In the centerline tracking loop, the previous tree
point, Tk−1 propagated to the current slice as a refer-
ence location to approximate the current tree point, tk.
However, tk is not optimized. By searching the min-

imum cost function of the vesselness value (�VkN ) and
distance between tk with the neighbourhood’s pixels
of the proximity (DkN ), tk is optimized as an approx-
imated point by a weighted minimum cost function:

ApxTk = argmin(Φ�VkN +ΨDkN ) (5)

where Φ and Ψ ∈ [0,1] indicate the weighted coeffi-
cients in the minimum cost function. In our case, we

consider �VkN and DkN are equally significant, thus Φ
and Ψ are set to 0.5. Herein, tk is optimized as ApxTk.
Subsequently, verification step is proposed to reduce
the error propagation in the following section.

2.2.4 Backward-Forward Correlation
Verification

In this step, ApxTk will be verified by a modified
Forward-Backward Correlation algorithm invented by
Wang [10] which used to overcome the problem from
traditional template-based tracking. Theoretically, the
forward-backward correlation template-based tracking
provides better accuracy in vessel’s centerline tracking
instead of point tracking as more information are inves-
tigated during the tracking process. Thus, we modify
the algorithm which aim to verify the point’s position
by question the approximation, finding the best posi-
tion in the reference location and locate again in the
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search region. We intend to utilize this concept to cor-
rect and verify the location of ApxTk from previous
step. First, we perform a backward-current correlation
correction for ApxTk. Subsequently, the verification of
final point is endorsed by a forward-current correlation
matching algorithm.
In backward-current correlation correction, ApxTk is

back propagate to the previous slice, ApxTk−1 as the
center point for a set of 4-tuples center points,

cnk−1 =

4∏
n=0

ApxTk−1 +RV ∗ ω(2πn/4) (6)

where ω(θ) = usin(θ) + vcos(θ); u and v denote a 2D
plane. Each of search region is a circle proximity with
radius, RV . Correlation coefficients for each proximity
region (Regionn

Ak−1

) are defined by

rnAk−1
=

∑
(AN,n

k−1 −An
k−1)(A

N
k −Ak)√∑

(AN,n
k−1 −An

k−1)
2 ∑

(AN
k −Ak)

2
(7)

where A represent ApxT . The matched region
(Regionmatched

Ak−1

) is the proximity with maximum cor-

relation coefficient and the corrected point is:

CorTk−1 = max(Regionmatched
k−1 (x, y, z)) (8)

Then in the forward-current correlation verification,
CorTk−1 is propagated forward to next slice, CorTk

now as the center point for the set of 4-tuples center
points,

cnk =

4∏
n=0

CorTk +RV ∗ ω(2πn/4) (9)

The correlation coefficients calculated by,

rnCk
=

∑
(CN,n

k −Cn
k )(C

N
k−1 −Ck−1)√∑

(CN,n
k −Cn

k )
2 ∑

(CN
k−1 −Ck−1)

2
(10)

where C represent CorT . Hence, the verified point is
defined as:

V erTk = max(Regionmatched
k (x, y, z)) (11)

There are cases where more than one V erTk oc-
curs. The last obtained point is accepted as V erTk.
Nevertheless, this does not affect much in our algo-
rithm, merely small proximity region is defined. Fi-
nally, V erTk is collected as Tk(x, y, z).

2.2.5 Tracking Scheme and Stopping Criteria

In order to track a 3D tubular structure, we in-
clude the direction examination to control the prop-
agation direction using similar concept in correlation
neighbourhood search. 2 × n number of correlation
coefficients are calculated i.e. n from previous slice
and n from next slice. Then the slice with maxi-
mum correlation coefficient is considered as the prop-
agation direction. Consequently, the Minimum Cost
Path Approximation is performed on the slice follow
by Backward-Forward Correlation Verification. The

tracking process loops until the distance between two
consecutive T more than a defined threshold RNV and
not background pixels. The details of feedback mech-
anism tracking steps are presented as above.
For multiple vessels tracking, a list of S are put in

the queue and the algorithm is repeated iteratively.

3 Experimental Results and Evaluations

We evaluate the performance of proposed method
on the datasets publicly available. 16 dataset are se-
lected from the database. The CTA dataset are ac-
quired with average resolution of 0.37mm x 0.37mm x
0.42mm. Three major coronary arteries were selected
from each dataset for evaluation: left anterior descend-
ing (LAD), left circumflex (LCX) and right coronary
artery (RCA).

Two measures are used to evaluate the error propa-
gation reduction by the estimated centerline from pro-
posed method: (1) Ω1 define as the capability to track
the vessel of reference standard and (2) Ω2 is the aver-
age distance error of the estimated centerline from ref-
erence standard. Our reference standard refer to the
centerlines prepared by paper [11]. The points from
proposed method are pair with points from reference
standard using shortest Euclidean distance. Then the
pair of points are sampled densely with distance less
than or equal to 4 pixels length (≈ 1.5 mm). TPm
defined as the points of estimated centerline points
that have correspondence to reference standard; TPr
defined as the points of reference standard centerline
points that have correspondence to estimated center-
line; FP defined as the points of estimated centerline
that do not have correspondence to reference standard;
FN defined as the points of reference standard that do
not have correspondence to estimated centerline.
Two evaluation measures are calculated:

Ω1 =
TPm +TPr

TPm +TPr + FP+ FN
× 100% (12)

Ω2 =
TotalDist

TotalPts
(13)

where TotalDist indicates the total distance error be-
tween estimated centerline and reference standard and
TotalPts refers to the total number of sampled points
from estimated centerline. We compare the results
from proposed method and minimum cost path ves-
sel tracking without feedback mechanism (NFM) to
evaluate the capability of the proposed method in er-
ror propagation reduction. Note that the minimum
cost path vessel tracking without feedback mechanism
method is implemented based on the minimum cost
path function in our Minimum Cost Path Approxima-
tion module (in section 2). Table 1 shows the exper-
imental results. Figure 1 illustrates the results from
our proposed method tested with 3 different dataset.
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(a) Dataset 1 (b) Dataset 2 (c) Dataset 3
Figure 1. Overlay of estimated centerline from proposed method in white color and reference standard in
black color from 3 dataset. [Best viewed in color.]

Table 1. Experimantal Results.

Measures
NFM Proposed Method

Min Max Average Min Max Average

Ω1 (%) 3.3 92.4 50.0 22.7 88.5 67.6
Ω2 (mm) 0.33 1.04 0.57 0.31 0.81 0.52

Refer to Table 1, our proposed method improves Ω1

(capability to track the vessel of reference standard)
by 17.6% and reduces Ω2 (average error distance) by
0.5mm compare with NFM. In Figure 1, the reference
standard superimposes estimated centerline (proposed
method) for each dataset to illustrate the proficiency
of our proposed method compare with reference stan-
dard; white lines indicates estimated centerlines from
proposed method and black lines indicates reference
standard. Notice that, the initial points of our pro-
posed method are not defined from the beginning of the
coronary artery, because our proposed method still not
able to cope with line-like profile (not blob-like shape
e.g. vessel’s bifurcation) and vessel’s branching prob-
lem due to the defined circle proximity for neighbour-
hood search. Thus, we define the seed points after the
line-like profile in order to test the capability of pro-
posed method in reducing error propagation.

4 Conclusion

We propose a neighbourhood search feedback mech-
anism for coronary artery centerline tracking using
likelihood matching of proximity in order to reduce
error propagation. The algorithm tested with 16 CTA
dataset, the experimental results show that our pro-
posed method improves 17.6% in capability to track
vessel and reduces 0.05mm of average distance error
compare with the method without feedback mecha-
nism. These results provide evidence whereby the
neighbourhood search feedback mechanism has the po-
tential in reducing error propagation. However, mod-
ification of feedback mechanism is required for differ-
ent tracking algorithm. Besides, improvement of algo-
rithm is needed to enhance the feedback mechanism.
For instance, extract difference feature for correlation
verification.
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