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Abstract

Fisher’s linear discriminant analysis (FLDA) has
been widely used due to its simple formulation and
low computational costs. However, FLDA implicitly
assumes that all the classes share the same covari-
ance, and therefore it might fail when this assumption
is not necessarily satisfied. Among various extensions
to tackle this problem, we focus on Detailed Fisher’s
linear discriminant analysis (DFDA) that can greatly
improve the classification performance which preserv-
ing a simple formulation and low computational costs.
However, its formulation seems ad-hoc and has not
been theoretically justified yet. This paper proposes a
new variant of DFDA that can be mathematically jus-
tified and intuitively comprehensive. Our new formu-
lation reveals the fundamental nature of DFDA (and
our new formulation) that tries to capture class-wise
feature distributions from multiple views. Preliminary
experiments demonstrate a promising result of our new
formulation.

1 Introduction

Fisher’s linear discriminant analysis (FLDA) [5] has
been widely used as a discriminative feature extractor
in the fields of pattern recognition, computer vision
and machine learning [2, 8] for a long time due to its
simple formulation and low computational costs. How-
ever, FLDA has a disadvantage: it implicitly assumes
that a distribution of each class should be Gaussian
and all the classes share the same covariance matrix.
FLDA works very well when this assumption is satis-
fied, however, most real-world datasets are not in the
case.

A lot of extensions and modifications of FLDA have
ever been proposed to overcome the problem, which
can be roughly classified into two approaches.

The first approach is non-linear or piecewise lin-
ear extentions. Hastie et al. [9], Zhu et al. [16], and
Gkalelis et al. [7] integrated cluster analysis into FLDA
to fit multi-peak feature distributions. Baudat [1] and
Sierra [14] introduced non-linear formulations to deal
with complex feature distributions. The first approach
is very popular and yields outstanding performances
against FLDA. However, it requires high computa-
tional costs, which would eliminate one of the strengths
of FLDA. Furthermore, this approach often encounters
some difficulty in model selection, such as the number
of peaks and the type of transformations.

The second approach is the introduction of metrics
between probabilistic distributions into the computa-
tion of between-class scatter matrices, instead of a sim-
ple Euclidean norm. Kullback-Leibler divergence and
Chernoff distance [3, 11] has been tried for this pur-
pose. One major problem of this approach lies on the

asymmetric structure of metrics, which leads to incon-
sistent formulations of the entire method.
Sakano et al. [13] recently proposed yet another

extension of FLDA called Detailed Fisher’s linear
discriminant analysis (DFDA). The main idea of
DFDA is a combination of FLDA and the class de-
scription of Class Featuring Information Compression
(CLAFIC) [12, 10]. Inspired by CLAFIC, DFDA
injects covariance information of every class into a
between-class scatter matrix by utilizing eigenvectors
of class-specific auto-correlation matrices. These eigen-
vectors specify a feature subspace, and therefore have
a potential to reveal a detailed covariance structure
of every class. DFDA integrated them into the origi-
nal FLDA by simply adding between-class scatter ma-
trices derived from feature vectors and eigenvectors
of class-wise auto-correlation matrices. The formula-
tion of DFDA consists of simple matrix operations so
that DFDA preserves the main advantages of FLDA,
namely the simple formulation and low-computational
costs. Despite of those merits, DFDA has a crucial
drawback: No theoretical backgrounds and justifica-
tions. The way of the extension in DFDA seems ad-
hoc, and the reason why DFDA achieves remarkable
improvements has still been unclear.
This paper proposes a new variant of DFDA that

can be mathematically comprehensive. Through the
discussion in this paper, we clarify the fundamental
nature of DFDA and our new formulation that tries
to capture class-wise feature distributions from mul-
tiple viewpoints, one from the mean of all the fea-
tures, the other from the origin. Although between-
class scatters obtained from eigenvectors of class-wise
auto-correlations would not be optimal from the stand-
point of discriminant analysis, they would have a great
potential to discriminative training from the analogy
to CLAFIC.
The rest of the paper is organized as follows: Sec-

tion 2 reviews the classical FLDA, and clarify its fun-
damental problems. Section 3 describes DFDA as an
extension of FLDA, which integrates class-wise fea-
ture distributions. Section 4 proposes a new variant
of DFDA by reformulating DFDA, which enables us to
deeply understand the nature of DFDA. Section 5 re-
ports preliminary experimental results with standard
benchmark datasets. Finally Section 6 concludes the
paper and poses some future work.

2 Fisher’s linear discriminant analysis

This section reviews the classical FLDA. Briefly
speaking, FLDA tries to maximize between-class dis-
tances and to minimize within-class distances. Espe-
cially, it finds a set of bases most discriminative for
classifying features labeled with one of the C classes.

Let x
(c)
1 , . . . ,x

(c)
nc be a set of D-dimensional sam-
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ples in class c (c = 1, . . . , C), where nc is the num-
ber of samples assigned to the class c. Let μ(c) be
the mean vector of samples assigned in the class c.

Here, we use the notations X(c) = (x
(c)
1 · · · x

(c)
nc )

to represent the data matrix with class c, and X =(
X(1) · · · X(C)

)
to represent the data matrix com-

posed of all the features.
The between-class distances can be characterized by

the following between-class scatter matrix:

ΣB =
1

n

C∑
c=1

nc(μ
(c) − μ)(μ(c) − μ)�

= var[X]− 1

n

C∑
c=1

ncvar[X
(c)] (1)

where n is the total number of data, μ is the mean
vector of all samples, and var[A] is the scatter matrix
of columns of A. The within-class distances can also
be characterized by the following within-class scatter
matrix:

ΣW =
1

n

C∑
c=1

ncΣ
(c) =

1

n

C∑
c=1

ncvar[X
(c)] (2)

where Σ(c) = var[X(c)] is the scatter matrix of the
class c. FLDA can be easily solved by the generalized
eigenvalue problemΣBa = λΣWa where a is an eigen-
vector and λ is an eigenvalue obtained from the gener-
alized eigenvalue problem. The eigenvectors obtained
from the generalized eigenvalue problem correspond to
the most discriminative axes for a given dataset X
from the standpoint of FLDA.

The number of valid eigenvectors of the generalized
eigenvalue problem is always less than C, since the
between-class scatter matrix ΣB is a sum of C one-
rank matrices, and therefore its rank is less than C.
This is one of critical disadvantages in FLDA. Also, it
implicitly assumes that a distribution of each class is
Gaussian and all the classes share the same covariance
matrix. If this assumption is violated especially in high
dimensional feature spaces, a lot of samples with dif-
ference class labels often tend to be distributed close
with each other on the discriminant axes.

3 Detailed FLDA

This section reviews Detailed FLDA (DFDA) [13]
that can be regarded as an extension of FLDA consid-
ering different covariance structures of each class.

As described in the previous section, FLDA only fo-
cuses on separating class mean vectors when calculat-
ing between-class distances. In other words, FLDA
does not consider details of feature distributions such
as covariance matrices of classes, which might have a
potential for discrimination. To mitigate this prob-
lem, a straightforward extension of FLDA based on
Kullback-Leibler divergence has been proposed by De-
cell et al [3]. However, it requires much larger computa-
tional costs than the original FLDA, which reduces the
usefulness of FLDA. A much simpler extension with
the Chernoff criterion has been proposed by Loog et
al [11]. However, it does not scale to large class prob-
lems such as Chinese character classification, because

it requires a number of pairwise binary classifications
to deal with multi-class discrimination problems.
DFDA provides a much simpler and more effec-

tive solution to the above problem than the previ-
ous extensions. The main contribution of DFDA is
the introduction of additional information inspired by
CLAFIC [15]. In CLAFIC, a feature distribution of
each class is represented by a subspace spanned by
eigenvectors of the auto-correlation matrix of the class.

Let ψ
(c)
k be the k-th eigenvector of the auto-correlation

matrix Φ(c) of the c-th class, where

Φ(c) =
1

nc

nc∑
i=1

x
(c)
i x

(c)
i

�
.

A subspace spanned by the eigenvectors ψ
(c)
k (k =

1, 2, · · · ) contains rich information about the feature
distribution of the class c. This information is essen-
tially different from the one contained in the within-
class scatter matrix ΣW . To this end, DFDA incor-
porates a new criterion for evaluating disparity among
classwise feature distributions into FLDA, with the use

of the eigenvectors ψ
(c)
k .

A newly introduced criterion of DFDA is defined as

ΣB2 =

C∑
i,j=1
i �=j

du∑
k=1

du∑
l=1

(ψ
(i)
k −ψ(j)

l )(ψ
(i)
k −ψ(j)

l )�, (3)

where du is the number of eigenvectors of the auto-
correlation matrix Φ(c) given in advance. Incorporat-
ing the above new criterion into FLDA, we can formu-
late DFDA with the generalized eigenvalue problem
(ΣB+ΣB2)a = λΣWa, namely the between-class ma-
trix ΣB is replaced by ΣB +ΣB2.

4 Proposed method and its analysis

This section describes our proposed method that is
a simplified variant of DFDA to intuitively understand
its nature.
First, let us introduce the following identity

m∑
i=1

m∑
j=1

(ai − aj)(ai − aj)
� = 2m2var[A]

where ai is the i-th column vector of A.
This identity readily yields the following equations:

ΓT =
C∑

i,j=1

du∑
k=1

du∑
l=1

(ψ
(i)
k −ψ(j)

l )(ψ
(i)
k −ψ(j)

l )�

= 2(Cdu)
2var[Ψ], (4)

ΓW =
C∑

c=1

du∑
k=1

du∑
l=1

(ψ
(c)
k −ψ(c)

l )(ψ
(c)
k −ψ(c)

l )�

=
C∑

c=1

2d2uvar[Ψ
(c)], (5)

Ψ(c) = (ψ
(c)
1 . . . ψ

(c)
du

), Ψ = (Ψ(1) . . . Ψ(C)).
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This indicates that the criterion ΣB2 introduced in
DFDA (cf. Eq. (3)) can be rewritten as

ΣB2 = ΓT − ΓW

= 2C2d2u

{
var[Ψ]− 1

C2

C∑
c=1

var[Ψ(c)]

}
. (6)

The above equation helps us to understand some
mathematical background of DFDA. We can see from
the equation that the new quantity ΣB2 introduced
in DFDA exploits the sum of within-class scatters
var[Ψ(c)] and whole the scatter var[Ψ]. Although
this operation seems similar to the one of calculat-
ing the between-class scatter in FLDA, we can find
two major differences between them: (1) In DFDA, all
the scatters are calculated from eigenvectors of auto-
correlation matrices, not from features, and (2) within-
class scatters seem under-evaluated in DFDA, which
can be seen by comparing Eq. (1) with Eq. (6). If
we want to keep a balance between whole the scatter
var[Ψ] and class-wise scatters var[Ψ(c)], the between-
class scatter ΞB and within-class scatter ΞW of eigen-
vectors of auto-correlation matrices should be defined
as follows:

ΞB = var[Ψ]− 1

C

C∑
c=1

var[Ψ(c)],

ΞW =
1

C

C∑
c=1

var[Ψ(c)].

In general, eigenvectors of auto-correlation matrices
has been already normalized, while features are not
necessarily normalized. This implies that two types of
within-class scatters (ΣW and ΞW ) and between-class
scatters (ΣB and ΞB) might have different ranges. To
control the difference of ranges, we introduce a weight
parameter α, resulting in the following within-class and
between-class scatter matrices:

ΣBnew = ΣB + αΞB , ΣWnew = ΣW + αΞW .

A new formulation can be obtained by the following
generalized eigenvalue problem:

(ΣB + αΞB)a = λ(ΣW + αΞW )a, (7)

which we call Revised DFDA (RDFDA).
From the formulation of RDFDA, we can see that

the auto-correlation terms ΞB and ΞW weighted by
α can be regarded as regularization terms to avoid
over-compression of the feature space. A feature space
obtained by FLDA for C-class classification is gen-
erally over-compressed with dimension less than C,
which will lead to poor classification accuracy. This
rank deficiency can be avoided if the rank of the auto-
correlation term ΞB is sufficiently large, which might
yield improvement in classification accuracy.

Our main claim in this paper is that observing fea-
tures from multiple viewpoints is quite significant. The
new formulation Eq.(7) consists of scatter terms (ΣB

and ΣW ) and auto-correlation terms (ΞB and ΞW ).
Here, we note that a scatter matrix can be regarded
as an auto-correlation matrix when the origin of the
coordinate system is located at the center of mass of

features. From this aspect, RDFDA tries to capture
class-wise feature distributions from two viewpoints,
one from the center of mass of every class and the
other is the origin of the coordinate system. The view-
point from the center of mass is usual in various types
of discriminant analyses, while the viewpoint from the
origin of coordinate system has not been tried so far
in any types of discriminant analyses, except DFDA.
Observing features from the center of mass describes
their relative positions, while observing features from
the origin of the coordinate system reveals their ab-
solute positions, which avoids over-compression of the
features space.
The weighting parameter α takes an important role

to improve the classification accuracy, since it controls
the balance of two viewpoints as well as the degree of
regularization. However in this paper, we simply set
α = 1 to check the effectiveness of our new formulation.

5 Experiments

In this section, experimental evaluations and demon-
strates the effectiveness of DFDA and RDFDA is pre-
sented. In the experiments, a few datasets selected
from UCI machine learning repository1 is emploied.
The datasets are selected based on the two con-

ditions as follows: (1) The number of classes, C, is
smaller than dimension of the feature vectors, D. (2)
The number of samples in each class, nc, is larger than
the dimension of the feature vectors, D.
After discriminant space is computed, data are clas-

sified by one nearest neighbor method.
Table 1 summarizes all the experimental results

that include classification accuracy and the number
of eigenvectors of class-wise auto-correlation matrices,
du. In Table 1, the classification accuracy of FLDA
is better than that in Sakano et al.[13] because of by
selecting parameters and compress dimension du care-
fully in check experiments of Sakano et al.[13].
As shown in the table, the classification accuracies

of RDFDA and DFDA are superior to FLDA for all
the datasets. The results indicate that the regular-
ization terms of RDFDA and DFDA were surprisingly
effective.
The experimental results also show that RDFDA

marked comparable performance with DFDA, and the
superiority depends on dataset. However, the opti-
mal number of eigenvectors taken from class-wise auto-
correlation matrices for RDFDA was almost the same
as or much smaller than that of DFDA, which indicates
a potential of our new method RDFDA.

6 Conclusion

This paper proposes a new variant of FLDA called
Revised DFDA (RDFDA). As shown in the name, our
new method is a minor update of DFDA, however
this update provides some theoretical justifications for
RDFDA and DFDA. Our main claim in this paper
is that observing features from multiple viewpoints is
quite significant. FLDA only observes data from a
single specific viewpoint, meaning the center of mass.
Meanwhile, (R)DFDA observes data from two different
viewpoints, one is the center of mass, and the other is

1http://archive.ics.uci.edu/ml
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Table 1. Evaluation of proposed method on UCI MLR data
Data D C � of training/test samples FLDA DFDA(du) RDFDA(du)

Breast cancer 28 2 400/ 369 78.0% 89.4%(13) 87.8%(19)
magic 10 2 400/18820 55.8% 70.9%(4) 75.3%(5)
wine 13 3 180/ 118 40.0% 91.5%(6) 90.7%(6)

spambase 8 2 400/ 4401 55.8% 83.8%(28) 81.8%(29)
image segmentation 19 7 1470/ 2100 48.9% 88.4%(18) 88.8%(9)

ionosphere 34 2 200/ 251 56.6% 89.6%(24) 88.9%(17)
statlog(Landsat) 36 6 10800/ 4635 26.1% 76.4%(35) 73.5%(34)
statlog(Shuttle) 9 7 43500/14500 91.4% 99.8%(9) 99.9%(3)
statlog (vehicle) 18 4 1600/ 446 37.2% 70.4%(15) 70.9%(17)

madelon 500 2 4000/ 600 54.2% 77.7%(477) 55.8%(456)
optdigits 64 10 38230/ 1797 45.4% 98.2%(56) 95.1%(38)

Cardiotocography 21 3 3000/ 1126 73.5% 87.9%(6) 88.5%(5)

the origin of the coordinate system. Observing features
from other viewpoints would work as a kind of regu-
larization, which avoids rank deficiency FLDA often
encounters. The effectiveness of our new formulation
was shown by experiments with several datasets in UCI
machine learning repository. Our new formulation are
still composed of only simple matrix operations, and
therefore we can enjoy low computational costs and
high classification accuracy as DFDA do so.

Promising future work includes selecting optimal
weighting parameters, integration with other types of
extensions of FLDA such as [7, 9, 11, 16] and exten-
sions to canonical correlation analysis.
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