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Abstract

Visual place recognition for mobile robot localization
is an important problem in robotics and computer vi-
sion research. In this paper, we present a novel scene
recognition technique that resembles human cognition
based on the scene change observation. Our semantic
scene descriptor, Extend-HCT, is based on the SURF
features. We build a scene change judgement system
by analyzing the parameters of Extend-HCT codewords.
We design an algorithm to mark the interested regions
and construct the topological map after the autonomous
mobile robot passing through an unknown path. It can
then be used to assist for the place recognition, localiza-
tion and navigation tasks if the robot goes through the
environment in the future. The experimental results
for the indoor and outdoor scenes are presented.

1 Introduction

Place recognition for mobile robot localization is an
active research topic in robotics. Scientists and en-
gineers have designed many kinds of sensors in order
to enable robots to explore the unknown environment,
let robots perceive the outside world, and understand
the relationship between their locations and obstacles.
Based on the current sensor technologies, researchers
can use a variety of sensors to develop key algorithms
to achieve their objectives. Some important tasks are
creating a map for an unknown environment, sensing
the obstacle information in the environment, or ask-
ing the robot to arrive an assigned destination, etc.
[13]. In the literature, most studies adopt traditional
distance sensors to deal with these problems. The
commonly used techniques include sonar, laser range
finder, odometer, and image-based approaches, etc.
To let autonomous mobile robots have the ability

to navigate and recognize the environment, the robot
must be able to label the areas of the environment
automatically. Scene change detection is a newly ex-
plored approach for the robotics community to accom-
plish this task. It has been used in the field of mul-
timedia, e.g. for the purpose of image compression
by continuous image segmentation [2]. The related is-
sues are also investigated in mobile robotics to mark
the important locations of the environment and cre-
ate a topological map [3]. Some researchers installed
the camera on an unmanned aerial vehicle (UAV) and
used optical flow method to detect scene changes and
construct the topological map [5].
For the application of visual place recognition, us-

ing the catadioptric camera with a full 360-degree field

of view is one of the most suitable methods to acquire
the rich information from the surrounding environment
[12]. In this work, we install an omnidirectional vi-
sion system on the mobile robot, and use the recorded
panoramic images for place recognition and localiza-
tion. In the past few years, this problem has attracted
considerable attention in the field of computer vision
and robotics [6, 9]. Some feature descriptions such as
SIFT [4], SURF [1], or the color information [8, 10]
are used by researchers to describe and construct the
visual scenes.

This work presents a scene change detection and
topological map construction technique using omni-
directional image sequences. The visual information
associated with the environment is obtained from a
panoramic camera device mounted on a mobile robot
platform. Based on the previous work using the mul-
tiple convex hull scene description [11], we develop
a data analysis system to detect the dramatic scene
changes in the environment. The mobile robot is then
able to navigate in an unknown path while construct
the topological map according to the scene change
nodes recorded in the database.

In this paper, we describe the important scenes by
Extended Hull Census Transform (Extended-HCT). It
is used to transform the images to a series of binary
codes for representation. This method is developed
for scene change detection from omnidirectional im-
ages. Since the lighting change is one major issue for
scene change detection, we design an algorithm which
can generate a similar descriptor at the same scene
with different illumination conditions in the environ-
ment. We have shown that our method is robust and
can adjust to the environment in a variety of fast and
large illumination changes. Consequently, the topolog-
ical map can be constructed using an omnidirectional
vision system, and then used to facilitate the place
recognition during the mobile robot navigation. The
experimental results are presented for both the indoor
and outdoor scenes.

2 Extended-HCT and Change Detection

If a mobile robot needs to perform the localization
and scene recognition tasks at the same time, it usu-
ally adopts the topological map to locate its current
position. Thus, it is an intuitive way to solve the lo-
calization problem by combining the visual recognition
system and the topological map. This paper uses the
semantic descriptor named “Extended-HCT” to estab-
lish a topological map based on the hull census trans-
form (HCT) [11]. The proposed method aims to rep-
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Figure 1. Scene descriptor with 6 parameters.

resent the visual places, its features are quite similar
to the descriptors used in the HCT. It can adapt to
the fast and drastic illumination change, and is ideal
for the images captured from a catadioptric vision sys-
tem. In addition, Extended-HCT includes the color
information of the environment and the structure in-
formation of the convex hull feature points. Thus, it
is more suitable to describe the scene of visual recog-
nition compared to the original HCT.
Hull Census Transform is an important step in the

preprocessing of Extended-HCT. The convex hull of a
set of points in the Euclidean plane is the smallest con-
vex set that contains the set of points. When the set is
a non-empty finite subset of the plane, a convex poly-
gon is formed by connecting the elements in the sub-
set. The important features in the image are extracted
and processed with the hull census transform. The de-
scriptor can represent the image using more structured
information without losing the original characteristics
of the features [11].
For the Extended-HCT, the visual codewords are

adapted to the fast moving scenes, especially when
exploring the unknown environment. The most crit-
ical breakthrough in our approach is that the feature
coding vectors are derived based on the relationship be-
tween the feature points. It is able to tolerate the light-
ing changes without adjusting the parameter settings.
We use six kinds of parameters to describe the images,
including the relationship between the feature vectors,
the structured relation among the feature points in the
image, and the color histogram indexing information
associated with the environment.
The detailed descriptions of the parameters are given

as follows:

Features of Hull: The SURF features are first ex-
tracted from the omnidirectional images. This
parameter represents the number of feature points
for every layer of the convex hulls after performing
the HCT.

Cost: Each layer of the HCT codes is represented by a
binary string. The cost is given by the differences
value of the HCT codes of two consecutive image
frames.

Score: The score value is associated with the deci-
mal format in its ranking number of bits converted
from the HCT binary codes. It is defined by the
union of the norm of HCT code length.

Figure 2. Zero-crossing.

Color Histogram Index: The color information of
the environment is represented by the green, red,
blue and gray channels. This parameter is used for
counting the associated color histogram indexing
[10].

Structural Relation: Two parameters represent the
structural relation among the features. For each
layer of convex hull in an image, one is the cen-
troid of the feature point locations and the other
is associated with the total distance between any
two feature point locations.

The continuous omnidirectional image sequence is
used to perform the scene change detection. Since
the consecutive images captured at the nearby loca-
tions have very similar feature characteristics, their
Extended-HCT codes will also be highly correlated.
Strictly speaking, the parameters of the Extended-
HCT codes as described previously will change gradu-
ally for the continuously captured images. With this
property, we can then analyze the information pro-
vided by the Extended-HCT codes to derive the scene
change of the environment.

In the implementation, the SURF features are ex-
tracted for Extended-HCT codes. The SURF descrip-
tor has the advantages that it is invariant to the rota-
tion, scaling, and brightness changes. Furthermore, it
also remains the high stability under viewpoint changes
and the affine transformation. Thus, the detected lo-
cations of the SURF feature extraction are very close
for two similar images.

To detect the scene change locations, a series of fil-
tering process is carried out on the diagrams of the six
kinds of descriptors. As illustrated in Figure 1, there
exist close relations and high dependencies among the
parameters, such as some peaks and valleys appeared
at the nearby locations. Since they are the results from
the Extended-HCT, we can analyze the common peaks
and valleys to derive the images with significant scene
changes. Due to the lack of equations for parameter
descriptions, it is not possible to identify the peak and
valley locations by differentiation. Thus, the convolu-
tion mask

Gm = [−1, 0, 1]
is used to detect the gradient changes of the parametric
functions. By checking the zero-crossings, some posi-
tions with extreme values can be obtained.

It is clear that the number of scene changes depends
on the criteria for image content evaluation. Moreover,
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Figure 3. Evaluation for system accuracy.

the peaks and valleys will not appear at exactly the
same locations in general. To make the zero-crossing
on the parametric descriptors for scene change detec-
tion feasible, we employ a sliding window to search the
extrema of the descriptors within a fixed time inter-
val. First, the image frame is marked if there exists
a zero-crossing for any parameters in the sliding win-
dow. They are then superimposed to generate a single
representation as illustrated in Figure 2. Finally, the
scene change frame is selected for the values greater
than a preset threshold.

3 Experimental Results

In the experiments, we demonstrate the scene change
detection and topological map construction for the in-
door and outdoor scenes. To evaluate the performance
of the proposed system, the detected scene changes
are compared to the manually marked groundtruth.
The scene change frames are used to partition the
groundtruth to several regions. In each region, a pos-
itive frame is defined as those belong to the largest
number of consecutive frames. The system accuracy
is then given by the percentage of positive frames in
terms of total frames as illustrated in Figure 3.
For the indoor scenes, the COLD dataset [7] is used

for performance evaluation. Three different robot plat-
forms with two heterogeneous cameras (catadioptric
and perspective ones) are used to gather the image
data under varying conditions and times in different
environments. These videos are also captured under
human motions and different weather conditions (e.g.
cloudy and night). The dataset is useful for testing the
visual place recognition algorithms because the three
different environments have similar rooms such as print
rooms, one-person offices, etc.
Figures 4 and 5 show the topological maps con-

structed from the COLD dataset images captured from
the sequence “Freiburg Part A”. The connections be-
tween two colored curves indicate the scene change lo-
cations. Although the scene change locations do not
totally agree with the human observation, they are
fairly consistent for these two experiments. The sys-
tem accuracy is shown in Figure 6, which is better than
the results reported in the literature [7].
We have also compared the experimental results of

the scene change detection using Extended-HCT and
HCT. Figures 7(a) and 7(a) show the results of the
COLD-Freiburg Part A night 1 sequence for Extended-
HCT and HCT, respectively. The topological maps are
constructed using the same color segment to represent
the same scene and the connection point between dif-
ferent color segments to indicate the scene change lo-
cation. In the proposed method, the images are trans-
formed to 29 parameters by Extended-HCT (5 layers of

Figure 4. COLD-Freiburg Part A seq1 sunny2
(accuracy: 71.04%, positive frames: 1075, total
frames: 1517).

Figure 5. COLD-Freiburg Part A seq1 cloudy1
(accuracy: 67.16%, positive frames: 980, total
frames: 1459).

convex hull and 6 kinds of parameters). On the other
hand, HCT uses only 6 parameters (3 layers of convex
hull and 2 kinds of parameters). Thus, in this work
we get much richer information than what is used in
HCT, including many structural relationships of fea-
ture points and the color information of the environ-
ment. If the extraction of feature points are too few
to obtain enough convex hulls, then the proposed tech-
nique has better tolerance for the environment change
than HCT, like the two rooms on the lower left cor-
ner in Figure 7. The performance comparison for the
proposed method and HCT is shown in Figure 8. A
significant improvement can be seen for the night scene
sequence.

For the outdoor scene experiments, the omnidirec-
tional camera is mounted on top of an SUV and moves
around the university campus. The location of the
SUV is recorded by the GPS to generate a metric topo-
logical map. Similar to the indoor experiments, 6 kinds
of parameters are used for Extended-HCT and scene
change detection. Figure 9 shows the generated topo-
logical map overlaid on a Google map where the red

Figure 6. System accuracy.
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Figure 9. Topological map of the outdoor scene.

(a) COLD-Freiburg Part A night1 Accuracy: 73.30% (the
experiment result in this paper).

(b) COLD-Freiburg Part A night1 Accuracy: 64.45% (the
experiment result using only HCT)

Figure 7. The result of comparison analysis in
night path1.

Figure 8. Accuracy comparison.

lines are the navigation path of the SUV. The markers
on the map indicate the scene change locations derived
from the omnidirectional images. Due to the NMEA
and GPS receiver errors, we can see some parts of the
red lines are not on the road correctly. The problem
is out of scope of this study and will not be further
investigated.

4 Conclusion

This paper presents a new technique for scene change
detection and topological map construction. It is an
approach closely related to the human perception for
the scene change detection. We built a scene change
detection model based on Extend-HCT codewords, and
analyzed the generated change of the parameter of
codewords corresponding to environment. The exper-
iments are carried for both the indoor and outdoor
scenes.
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