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This paper presents an overview of our work on
image parsing, which we define as the problem of la-
beling each pizel in an image with its semantic cat-
egory. QOur aim is to achieve broad coverage across
hundreds of object categories, many of them sparsely
sampled. We first describe our baseline nonparametric
region-based parsing system. This approach is based
on lazy learning, and it can easily scale to datasets
with tens of thousands of images and hundreds of la-
bels. We then present three extensions to this baseline
system. First, we simultaneously label each region as a
semantic class (e.qg., tree, building, car) and geometric
class (sky, vertical, ground) while enforcing coherence
between the two label types (roads can’t be labeled as
vertical). Second, we extend this simultaneous labeling
to an arbitrary number of label types. For example, we
may want to simultaneously label every image region
according to its basic-level object category (car, build-
ing, road, tree, etc.), superordinate category (animal,
vehicle, manmade object, natural object, etc.), geomet-
ric orientation (horizontal, vertical, etc.), and mate-
rial (metal, glass, wood, etc.). Finally, we present a
hybrid parsing system that combines our region-based
system with per-exemplar sliding window detectors to
improve parsing performance on small object classes,
giving broader coverage.

1 Introduction

Our work addresses the problem of image parsing,
or labeling each pixel in an image with its semantic
category. Many approaches to this problem have been
proposed recently, including ones that estimate labels
pixel by pixel [14, 19, 32|, ones that aggregate features
over segmentation regions [10, 17, 23, 27], and ones
that predict object bounding boxes [3, 7, 15, 30]. Most
of these methods operate in a closed-universe scenario,
i.e., on datasets with a fixed number of images and a
few pre-defined classes. This scenario requires a gener-
ative or discriminative model to be trained offline for
each class. Training can take days and must be re-
peated from scratch if new training examples or new
classes are added to the dataset.

By constrast, our work focuses on open-universe
datasets that do not have pre-defined set of labels and
can evolve over time to include new images or labels.
Recently, a few researchers have begun advocating non-
parametric, data-driven approaches suitable for open-
universe datasets [37, 22, 21]. Such approaches do not
do any training at all. Instead, for each new test image,
they try to retrieve the most similar training images
and transfer the desired information from the training
images to the query. Liu et al. [21] have proposed a
nonparametric label transfer method based on estimat-
ing “SIFT flow,” or a dense deformation field between
images. The biggest drawback of this method is that
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the optimization problem for finding the SIFT flow is
fairly complex and expensive to solve. Moreover, the
formulation of scene matching in terms of estimating
a dense per-pixel flow field is not necessarily in accord
with our intuitive understanding of scenes as collec-
tions of discrete objects defined by their spatial sup-
port and class identity.

We set out to implement a nonparametric solution
to image parsing that is as straightforward and efficient
as possible, and that relies only on operations that can
easily scale to ever larger image collections and sets of
labels. Figure 1 gives an overview of our initial region-
based parsing system, which will be described in more
detail in Section 2. Similarly to [21], our method makes
use of a retrieval set of scenes whose content is used to
interpret the test image. However, unlike the approach
of [21], which works best if the retrieval set images are
very similar to the test image in terms of spatial layout
of the classes, we transfer labels at the level of super-
pizels [28], or coherent image regions produced by a
bottom-up segmentation method. The label transfer is
accomplished with a fast and simple nearest-neighbor
search algorithm, and it allows for more variation be-
tween the layout of the test image and the images in
the retrieval set. Moreover, using segmentation regions
as a unit of label transfer gives better spatial support
for aggregating features that could belong to the same
object [11].

Our non-parametric parsing system requires very lit-
tle training and is able to scale to datasets of thousands
of images, while still outperforming the parsing perfor-
mance of [21], which at the time was the state-of-the-
art system. Having introduced our baseline parsing
system in Section 2, the remainder of the paper will
discuss a number of extensions to improve its perfor-
mance.

First, we leverage geometric/semantic context in the
manner of Gould et al. [10]. Namely, for each super-
pixel in the image, we simultaneously estimate a se-
mantic label (e.g., building, car, person, etc.) and a
geometric label (sky, ground, or vertical surface) while
making sure the two types of labels assigned to the
same region are consistent (e.g., a building has to be
vertical, road horizontal, and so on). Our experiments
show that enforcing this coherence improves the per-
formance of both labeling tasks.

Next, we generalize this notion of geomet-
ric/semantic labeling to an arbitrary number of label
types. The question is what type of labeling to use.
We can label image regions with basic-level category
names such as grass, sheep, cat, and person; as well
as, coarser superordinate-level labels such as animal,
vehicle, manmade object, natural object, etc. We can
assign geometric labels such as horizontal, vertical and
sky, as discussed above. We can also assign material
labels such as skin, metal, wood, glass, etc. Further,
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Figure 1. Overview of our region-based image parsing system. Given a query image, we retrieve similar images from
our dataset using several global features. Next, we divide the query into superpixels and compute a per-superpixel
likelihood ratio score for each class based on nearest-neighbor superpixel matches from the retrieval set. These scores,
in combination with a contextual MRF model, yield a final labeling of the query image.

some regions belonging to structured, composite ob-
jects may be given labels according to their part iden-
tity: if a region belongs to a car, it may be a wind-
shield, a wheel, a side door, and so on.

Here the goal is to understand scenes on multiple lev-
els: rather than assigning a single label to each region,
we wish to assign multiple labels simultaneously, such
as a basic-level category name, a superordinate cate-
gory name, material, and part identity. By inferring
all the labellings jointly we can take into account con-
straints of the form “roads are horizontal,” “cars are
made of metal,” “cars have wheels” but “horses have
legs,” leading to an improved interpretation of the im-
age. Our methods for exploiting geometric/semantic
context and performing more general multi-level infer-
ence will be described in Section 3.

Finally, Section 4 will discuss our most recent work
on incorporating object detectors into our parsing sys-
tem with the goal of achieving broad coverage — the
ability to recognize hundreds or thousands of object
classes that commonly occur in everyday street scenes
and indoor environments. A major challenge in do-
ing this is posed by the non-uniform statistics of these
classes in realistic scene images. A small number of
classes — mainly ones associated with large regions or
“stuff,” such as road, sky, trees, buildings, etc. — con-
stitute the majority of all image pixels and object in-
stances in the dataset.

“Stuff” categories have no consistent shape but fairly
consistent texture, so they can be adequately han-
dled by image parsing systems based on pixel- or
region-level features [4, 5, 21, 25, 32, 35] which in-
cludes our base parsing system.However, these sys-

tems have difficulty with “thing” categories, which
are better characterized by overall shape than lo-
cal appearance. In order to better capture the
shape of “things,” a few recent image parsing ap-
proaches [12, 16, 19] have attempted to incorporate
sliding window detectors.Unfortunately, standard de-
tectors based on HOG templates [2] or deformable
part-based models (DPMs) [7] produce only a bound-
ing box, whereas image parsing requires a pixel-level
segmentation. Ladicky et al. [19] overcome this limi-
tation by inferring a mask from a bounding box detec-
tion using GrabCut [29]. This automatic segmentation
step can sometimes fail; moreover, it does not leverage
the learned detection model, only the final bounding
box. Guo and Hoiem [12] do not predict a mask from a
bounding box but instead use the auto-context scheme
of Tu and Bai [38] to directly incorporate the detector
responses into their pixel-level parsing system.

To address the challenges of inferring object seg-
mentations, we integrate region-based image parsing
with the promising framework of per-exemplar detec-
tors from Malisiewicz and Efros [24]. Per-exemplar de-
tectors meet our need for pixel-level localization: when
a per-exemplar detector fires on a test image, we can
take the segmentation mask from the corresponding
training exemplar and transfer it into the test image to
form a segmentation hypothesis. By combining region-
based parsing with per-exemplar detectors we are able
to greatly increase the parsing accuracy of “thing” cat-
egories and achieve significant parsing accuracy im-
provements over our base parsing system on several
challenging datasets.



SIFT Flow Per-Pixel | Per-Class
Local labeling (Sec. 2) 74.1 30.2
MRF (Sec. 2) 76.2 29.1
Joint Geo/Semantic (Sec. 3) 77.0 30.1
Detector Combined (Sec. 4) 78.6 39.2
Liu et al. [21] 76.7

Farabet et al. [5] 78.5 29.6
Farabet et al. [5] balanced 74.2 46.0
Eigen and Fergus [4] 77.1 32.5
Myeong et al. [25] 77.1 32.3

Table 1. SIFT Flow dataset: Semantic labeling accu-
racy and comparison to state of the art. “Per-Pixel”
is the overall per-pixel classification rate and “Per-
Class” is the average of the per-class rates.

2 Region-based nonparametric image pars-
ing system

This section presents an overview of our region-based
parsing system. It is based on a lazy learning philos-
ophy, meaning that (almost) no training takes place
offline; given a test image to be interpreted, our sys-
tem dynamically selects the training exemplars that
appear to be the most relevant and proceeds to trans-
fer labels from them to the query. The following is a
summary of the steps taken by the system for every
query image.

1. Find a retrieval set of images similar to the query
image.

2. Segment the query image into superpixels and
compute feature vectors for each superpixel.

3. For each superpixel and each feature type, find
the nearest-neighbor superpixels in the retrieval
set according to that feature. Compute a likeli-
hood score for each class based on the superpixel
matches.

4. Use the computed likelihoods together with pair-
wise co-occurrence energies in an Markov Random
Field (MRF) framework to compute a global la-
beling of the image.

Similarly to several other data-driven methods [21,
22, 30], our first step in parsing a query test image is to
find a relatively small retrieval set of training images
that will serve as the source of candidate superpixel-
level matches. This is done not only for computational
efficiency, but also to provide scene-level context for
the subsequent superpixel matching step. A good re-
trieval set will contain images that have similar scene
types, objects, and spatial layouts to the query image.
In attempt to indirectly capture this kind of similar-
ity, we use three types of global image features: spa-
tial pyramid [20], gist [26], and color histogram. For
each feature type, we add the n nearest neighbor train-
ing images to the retrieval set. Intuitively, taking the
best scene matches from each of the global descriptors
leads to better superpixel-based matches for region-
based features that capture similar types of cues as
the global features.

We wish to label the query image based on the con-
tent of the retrieval set, but assigning labels on a per-
pixel basis as in [14, 21, 22] tends to be too inefficient.

LM+SUN Per-Pixel | Per-Class
Local labeling (Sec. 2) 50.6 7.1
MRF (Sec. 2) 54.4 6.8
Joint Geo/Semantic (Sec. 3) 54.9 7.1
Detector Combined (Sec. 4) 61.4 15.2

Table 2. LM+SUN dataset: Semantic labeling accu-
racy. “Per-Pixel” is the overall per-pixel classification
rate and “Per-Class” is the average of the per-class
rates.

Instead, like [17, 23, 27], we choose to assign labels
to superpixels, or regions produced by bottom-up seg-
mentation. This not only reduces the complexity of
the problem, but also gives better spatial support for
aggregating features that could belong to a single ob-
ject than, say, fixed-size square windows centered on
every pixel in the image. For the second step, we ob-
tain superpixels using the fast graph-based segmenta-
tion algorithm of Felzenszwalb and Huttenlocher [8]
and describe their appearance using 20 different fea-
tures similar to those of Malisiewcz and Efros [23], with
some modifications and additions. Roughly speaking,
these features describe size, shape, appearance, loca-
tion, and texture of image regions.

Having segmented the test image and extracted the
features of all its superpixels, we compute a log like-
lihood ratio score for each test superpixel and each
class that is present in the retrieval set. We first com-
pute the likelihood ratio score for each feature inde-
pendently using a nonparametric density estimates of
the features from the given class around the superpixel
feature from the query image, and then combine scores
from different features using the Naive Bayes assump-
tion (see [33, 35] for details). At this point, we can
obtain a labeling of the image by simply assigning to
each superpixel the class with the maximum log like-
lihood ratio, which produces fairly competitive results
(see “local labeling” in Tables 1 and 2).

Finally, we would like to enforce contextual con-
straints on the image labeling — for example, a label-
ing that assigns “water” to a superpixel completely
surrounded by “sky” is not very plausible. Many
state-of-the-art approaches encode such constraints
with the help of conditional random field (CRF) mod-
els [9, 10, 14, 27]. However, CRFs tend to be very
costly both in terms of learning and inference. In
keeping with our nonparametric philosophy and em-
phasis on scalability, we restrict ourselves to contextual
models that require minimal training and that can be
solved efficiently. Therefore, we formulate the global
image labeling problem as minimization of a standard
MREF energy function defined over the field of super-
pixel labels ¢ = {¢;}:

J(C) = Z Edata(sia Ci) + A Z Esmooth(Ch cj) 5

s, €SP (si,85)€A
(1)

where s; is the ith superpixel region, c¢; is the class
assigned to that region, SP is the set of superpixels,
A is the set of pairs of adjacent superpixels and A is
the smoothing constant. The dataterm (Egata(si,c:))
is the likelihood ratio score weighted by the superpixel
size. The smoothing term Fgyootn penalizes adjacent
superpixels that are assigned different labels, with a
greater penalty to pairs of labels that co-occur less fre-
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Figure 2. Our contextual edge penalty before and after we run our MRF optimization.
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Figure 3. In the contextual MRF classification, the road gets replaced by “building,” while “horizontal” is correctly
classified. By jointly solving for the two kinds of labels, we manage to recover some of the “road” and “sidewalk” in
the semantic labeling. Note also that in this example, our method correctly classifies some of the windows that are
mislabeled as doors in the ground truth, and incorrectly but plausibly classifies the windows on the lower level as

doors.

quently than others (see Figure 2 for an example). We
perform MRF inference using the efficient graph cut
optimization code of [1, 18].

We evaluate our system on two datasets. The first
dataset, SIFT Flow [21], consists of outdoor scenes.
It has 2,488 training images, 200 test images, and 33
labels. The second dataset, LM+SUN [35], was col-
lected from the SUN dataset [39] and LabelMe [31].
It contains 45,676 images (21,182 indoor and 24,494
outdoor) and 232 labels. We use the split from our
IJCV paper [35], which consists of 45,176 training and
500 test images. We measure two performance met-
rics: the per-pixel classification rate and the average
per-class classification rate. The results for our system
and other state-of-the-art systems are shown in Tables
1 and 2.

We initially presented this parsing system in ECCV
2010 [33]. In a subsequent IJCV paper [35], we ex-
plore the various components of this system in more
detail and show how it can be used to parse video in a
temporally consistent manner.

3 Simultaneous Classification of Multiple
Label Types

To achieve more comprehensive image understand-
ing and to explore a higher-level form of context, we

consider the task of simultaneously labeling regions
into two types of classes: semantic and geometric [10].
The notion of parsing an image into geometric classes
was introduced by Hoiem et al. [17] and shown to be
useful for a variety of tasks, such as rough 3D model-
ing and object location prediction. Like Hoiem et al.
[17] and Gould et al. [10], we use three geometric la-
bels — sky, horizontal, and vertical — although the sets
of semantic labels in our datasets are much larger. In
this work, we make the assumption that each semantic
class is associated with a unique geometric class (e.g.,
“building” is “vertical,” “river” is “horizontal,” and so
on) and specify this mapping by hand. We jointly solve
for the fields of semantic labels (c) and geometric la-
bels (g) by minimizing a cost function that is a simple
extension of eq. (1):

‘H‘Z

s; €SP

Hc,g) = J(c) +

C’LV g’L

(2)

where ¢ is the term that enforces coherence between
the geometric and semantic labels. It is 0 when the
semantic class ¢; is of the geometric class type g; and
1 otherwise. Figure 3 shows an example where joint
inference over semantic and geometric labels improves
the accuracy of the semantic labeling.
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Figure 4. Our multi-level MRF (eq. 3).

The results for jointly estimating the geometric and
semantic labels are shown in Tables 1 and 2. The pri-
mary benefit of this system is a increase in the per-class
performance, correcting the errors caused by the MRF
smoothing. This work was presented in [33, 35].

Next, we generalize the two-level MRF objective
function (2) to perform simultaneous inference over
an arbitrary number of label sets. For example, the
different label sets can correspond to object (seman-
tic) labels, geometric labels, materials, parts, etc. We
want to perform simultaneous inference over these la-
bel sets while enforcing constraints between labels from
different sets for the same region: for example, “bird”
(semantic) and “feathers” (material) labels are consis-
tent, while “bird” and “metal” are not.

If we have n label sets, then we want to infer n label-
ings c!,...c", where ¢! = {cl} is the vector of labels
from the [th set for every region r; € R. We can visu-
alize the n labelings as being “stacked” together verti-
cally as shown in Figure 4. “Intra-set” edges connect
labels of neighboring regions in the same level just as
in the single-level setup of Section 2, and “inter-set”
edges connect labels of the same region from two dif-
ferent label sets. The MRF energy function on the

resulting field is
E(c',...,¢") =Y > Eaatalri,c})
I m€ER

+>\ Z Z Eintra(c/li ) Ci)

L (rirj)EA

+1 Z Z Einter(cév C'T)’

l#mr;ER

where Egata(ri,cl) is the data term for region r; and

label ¢ on the Ith level, Eipya(cl, cé) is the single-level

Label Set Base Single Joint

Animal/veh. || 92.8 (92.0) | 92.8 (92.9) | 92.8 (92.9)
Object 43.5 (41.8) | 53.2 (50.5) | 56.4 (36.7)
Material 51.8 (36.0) | 54.1 (34.3) | 53.9 (51.0)
Part 37.1 (11.2) | 42.6 (11.7) | 43.9 (12.3)
Table 3. CORE dataset results. “Base”: the label

with the maximum value of Fgata. “Single”: intra-
label set smoothing only. “Joint”: both intra- and
inter-label set smoothing. The first number in each
cell is the overall per-pixel classification rate, and the
number in parentheses is the average of the per-class
rates.
smoothing term, Einter(c,i-, ™) is the term that enforces
consistency between the labels of r; drawn from the
lth and mth label sets. Finally, the constants A and g
control the amount of horizontal and vertical smooth-
ing. Fgata and Ejnt, are defined in the same way as
in Section 2 with Einira = Fsmooth- As for the cross-
level penalty Ejpter, it is defined very similarly to to
the intra-level penalty (Egmootn), based on cross-level
co-occurrence statistics from the training set. If two
labels often co-occur (e.g., “motorcycle” and “wheel”)
Finter is low, while two label that rarely co-occur will
have a high penalty.

To evaluate the above multi-level inference ap-
proach, we used the Cross-Category Object
Recognition (CORE) dataset [6], which consists of
2,780 images and comes with ground-truth annotation
for four label sets. The “objects” set has 28 different
labels, of which 15 are animals and 13 are vehicles.
The “animal/vehicle” label set designates each object
accordingly. The “material” set consists of nine differ-
ent materials and the “part” set consists of 66 different
parts such as foot, wheel, wing, etc. The “material”
and “part” sets have a many-to-many relationship with
the object labels and both tend to be more sparsely la-
beled than the objects (i.e., not all of an object’s pixels
have part or material labels). Figure 5 shows one ex-
ample of how our multi-level framework can correct for
errors when each label set is parsed in isolation. Quan-
titative results are shown in Table 3. This work was
presented in ICCV 2011 [34].

4 Parsing with Per-Exemplar Detectors

This section presents a hybrid image parsing system
combining the region-based approach of Section 2 with
sliding window object detectors. The overview of this
system is given in Figure 6. First, we introduce our
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Figure 6. Overview and sample result of our combined region- and detector-based approach. The test image (a)
contains a bus — a relatively rare “thing” class. Our region-based parsing system computes class likelihoods (b) based
on superpixel features, and it correctly identifies “stuff” regions like sky, road, and trees, but is not able to get the

bus (c).

To find “things” like bus and car, we run per-exemplar detectors [24] on the test image (d) and transfer

masks corresponding to detected training exemplars (e). Since the detectors are not well suited for “stuff,” the result
of detector-based parsing (f) is poor. However, combining region-based and detection-based data terms (g) gives the
highest accuracy of all and correctly labels most of the bus and part of the car.

Figure 7. Computation of the detector-based data

term. For each positive detection (green bound-
ing box) in the test image (middle row) we transfer
the mask (red polygon) from the associated exem-
plar (top) into the test image. The data term for
“car” (bottom) is obtained by summing all the masks
weighted by their detector responses.

new detector-based component and then we describe
how we combine it with our region-based system.

Following the per-exemplar framework of Mal-
isiewicz and Efros [24], we train a separate detector
(HOG template) for each labeled object instance in
our dataset. At test time, given an image that needs
to be parsed, we first obtain a retrieval set of glob-
ally similar training images as in Section 2. Then
we run the per-exemplar detectors associated with all
ground-truth object instances in that retrieval set. For
each positive detection we project the associated ob-
ject mask into the detected bounding box (Figure 7).
To compute the detector-based data term Ep(p,c) for
a class ¢ and pixel p, we simply take the sum of all
detection masks from that class weighted by their de-
tection scores. Figure 6(e) shows some detector-based
data terms for the test image of Figure 6(a).

In addition, we define the region-based data term
ERr(p, ¢) using the likelihood ratio score output by the

system of Section 2. Now, for each pixel p and each
class ¢ in a test image, we end up with two data terms,
ERr(p,c) and Ep(p, c). Next, we train a one-vs-all SVM
for each class, each of which takes as input the both
data terms and returns a final per-pixel scores for a
given class c. Training data for each SVM is generated
by running region- and detector-based parsing on the
entire training set using a leave-one-out method: for
each training image a retrieval set of similar training
images is obtained, regions are matched to generate
Ep(p,c), and the per-exemplar detectors from the re-
trieval set are run to generate Ep(p, c). To obtain the
final labeling, we can simply take the highest-scoring
label at each pixel, but this produces noisy results.
We perform smoothing via a pixel-based MRF energy
function similar to [21, 32].

The above system achieves state-of-the-art results on
both the LM+SUN and SIFT-Flow datasets, as shown
in Tables 1 and 2. Figures 8 and 9 show the per-class
rates on the two datasets, while Figure 10 shows the
output of various stages of our system on three test
images. This work will appear in CVPR 2013 [36].

5 Discussion

Our parsing framework achieves fairly broad cover-
age on challenging large-scale datasets and it can lever-
age inter- and intra-label set context. However, there
are a number of areas in which we are currently pur-
suing improvements. First, our detector based pars-
ing framework is computationally expensive, especially
during the training stage. Fortunately, training of per-
exemplar detectors can be speeded up greatly using
the whitened HOG method of Hariharan et al. [13].
Also, the per-exemplar detectors themselves are open-
universe compatible (they can be trained individu-
ally and do not require re-training when new data is
added), the SVM combination is not, as it requires
batch training. We would like to train the combina-
tion incrementally in an online manner as new data
arrives.
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Figure 8. Classification rates of individual classes (ordered from most to least frequent) on the SIFT Flow dataset
for region-based, detector-based, and combined parsing. All results include SVM and MRF smoothing.
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Figure 9. Classification rates of individual classes (ordered from most to least frequent) on the LM+SUN dataset for
region-based, detector-based, and combined parsing. All results include SVM and MRF smoothing.
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Figure 10. Example results on the LM+SUN dataset (best viewed in color).
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