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Abstract

Face recognition techniques have gained much atten-
tion and research interests over the recent years due
to their vast applications in security and authentica-
tion systems. Some of the popular approaches involve
support vector machines (SVM), which can either be a
binary or a multiclass classification problem, and sub-
space learning, where data is assumed to lie on some
low dimensional manifold, such as that employing the
Grassmann kernels. Recent trends involve data in the
form of image sequences, hence treating them as data
points in a Grassmann manifold and performing dis-
criminant analysis in this space has been widely used.
However, this technique requires determining the re-
duced dimensionality which has been a critical issue for
such techniques. In this paper we introduce another
kernel for face membership authentication with simi-
larities to the Projection kernel, a Grassmann kernel.
Using the proposed kernel, dimensionality reduction is
of no concern and, thus, so is data loss. Moreover,
data covariance matrices are directly exploited. Ex-
perimental results on face membership verification task
show the effectiveness of the proposed kernel over the
Grassmann kernels and the Grassmann Distance Mu-
tual Subspace Method (GD-MSM).

1 Introduction

Over the last decades, authentication using
biometric-based techniques has gained attention from
academics due to their promising applications in secu-
rity and surveillance purposes [7]. Among them, face
recognition, the task of identifying a certain query from
a face database, has emerged as the most popular sub-
ject of research. This may be approached as a binary
classification or a multiclassification problem. Many
techniques have already been developed, such as those
using support vector machines (SVM) [2, 4, 9, 10], and
the famous Eigenfaces [17] and Fisherface [1].
Though early face recognition algorithms consider

a single image as one data point, recent trends al-
low us to represent data points as matrices instead
of vectors [3, 5, 8, 12, 13, 14, 15, 18, 19]. The algo-
rithm learns given multiple images for a certain sub-
ject and a data is composed of image sequences. Lat-
est techniques involve subspace-based learning meth-
ods which are developed under the assumption that
data can be modeled as a low-dimensional subspace of
the image space instead of vectors [20]. Data such as
sequences of images from a video feed can be consid-
ered, and face recognition can be performed if given
multiple pictures or a sequence of images for each sub-
ject. [3, 5, 8, 12, 13, 15, 18, 19]. Each image sequence
corresponds to some linear subspace and similarity be-
tween sequences are obtained by exploiting the angles

between subspaces. However, dimension reduction per-
formed in subspace-based methods, which is usually
done by retaining the valuable features for discrim-
ination, remains a challenging task. Even with the
use of the usual techniques such as Principal Compo-
nent Analysis (PCA) and Linear Discriminant Analy-
sis (LDA), there is always a possibility of information
loss. This motivated us to construct a kernel capa-
ble of retaining data information while being compu-
tationally inexpensive. We can preserve valuable data
features while managing to avoid the curse of high-
dimensionality and avoiding any form of data loss.
In this paper we propose a new kernel, the mean

polynomial kernel. This kernel can be directly used
to data involving digital image sequences which can
be modeled as a set of vectors. We evaluate the per-
formance of the proposed kernel in face membership
verification modeled as a binary classification problem.
The goal of this operation is to determine whether a
subject image is a ‘member’ or not. This can also be
extended to determining whether the given query is
the authorized user or owner, which are common situ-
ations in accessing secured buildings or offices, logging
on to computers, and other access control systems. We
use this in conjunction with SVM and also examine
the performance of other subspace-based discriminant
analysis for comparison.

2 Related literature

As linear subspaces can be represented as points in
the Grassmann manifold, recent subspace-based tech-
niques have been formulated in this setting [5, 6, 16].
The usual approach in defining similarity between sub-
spaces involves exploiting the principal angles between
them. We give here a brief overview of recent discrim-
inant analysis methods in Grassmann manifolds, and
their analogy with the proposed method.

Grassmann kernels, in general, as defined in [5] are
positive definite kernel functions in a Grassmann man-
ifold, a set of linear subspaces with a fixed number
of dimensions m. Video image sequences are repre-
sented by points in the Grassmann manifold, where
a single point corresponds to a linear subspace. The
Grassmann kernels are thus used to compute similari-
ties among principal subspaces of image sequences.

Definition 1. Let Ux and Uy be orthonormal matri-
ces whose columns are bases of linear subspaces. The
Projection kernel is defined as

kPROJ(Ux,Uy) =
∥∥U�

x Uy

∥∥2

F ,

where ‖·‖F denotes the Frobenius norm.

The Projection kernel was derived by defining a met-
ric, the Projection metric, on the Grassmann manifold
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Figure 1. Flow of methodology for computing the
Grassmann kernels and the mean polynomial kernel.
Each image sequence needs to be converted into a
subspace when Grassmann kernels are used. An im-
age frame in each video is regarded as a data point.
First, principal subspaces are computed, then values
of a Grassmann kernel between principal subspaces
are calculated. However, some information are lost
during the principal subspace conversion. The pro-
posed mean polynomial kernel, on the other hand,
directly computes kernel values from the set of data
points and avoids information loss.

[5]. Another kernel, the Binet-Cauchy kernel [5, 18],
was also introduced in a similar manner. For two
subspaces with orthonormal matrices Ux and Uy, the
Binet-Cauchy kernel is given by

kBC(Ux,Uy) = (detU�

x Uy)
2.

These kernels, termed Grassmann kernels, were em-
ployed in the Grassmann kernel support vector ma-
chine (GK-SVM) proposed in [16]. Using GK-SVM,
the kernel matrices are first computed and serve as the
input for SVM. In an analogous manner, this is how
we utilize the proposed kernel with SVM as classifier.
A general illustration of the flow of computation of the
Grassmann kernels and the proposed kernel is given in
Figure 1.
The Grassmann distance mutual subspace method

(GD-MSM) [16] is a comparable method to GK-
SVM where, instead of Grassmann kernels and SVM,
Grassmann distances are combined with the Mutual
Subspace Method. The GD-MSM uses some metric
D(Ux,Uy) defined on the Grassmann manifold. In the
face sequence recognition problem setting, the train-
ing stage of the method concatenates the video im-
age sequences in the training set for each subject, and
computes a single principal subspace for each subject.
Thus, the number of principal subspaces computed in
the training stage is equal to the number of subjects.
We refer to the set of principal subspaces as the subject-
wise dictionary. In the test stage, the principal sub-
space of an unknown video sequence of interest is com-
puted, and the subject that has the minimal Grass-
mann distance to the unknown principal subspace is
determined. To utilize their method for our desired

application, we may authorize the unknown person if
the subject from which it has a minimum Grassmann
distance has a positive membership, otherwise, we give
no authorization to the query.
Another approach employing Grassmann distances

for the face membership verification problem is by com-
puting a single principal subspace from all the video
sequences in each class. Thus, two principal subspaces
are obtained in the training stage: one for the positive
class and another one for the negative class. We refer
to the two principal subspaces as the class-wise dic-
tionary. In the test stage, the Grassmann distance of
the principal subspace of an unknown video sequence
to the subspace of each class is computed. The mem-
bership of the unknown sequence is authorized if and
only if its distance from the subspace of the positive
class is smaller.

3 Mean polynomial kernel

In this section we introduce a new kernel, the mean
polynomial kernel, for the face recognition task where
an example is considered as a set of vectors instead of
a single vector.

Let us consider two image sequences X = {xi}
�
i=1

and Y = {yj}
�′

j=1
. The two sequences X and Y con-

tain � and �′ images, respectively, and each image is
represented by a d-dimensional vector containing in-
tensity values of d = d1 × d2 pixels in a d1 × d2 im-
age. To define a new kernel for image sequences, we
introduce a notation of a set of image sequences as
S =

{
{zi}

n
i=1
|n ∈ N and ∀i ∈ Nn, zi ∈ R

d
}
, where N

is the set of natural numbers, and Nn = {i ∈ N | i ≤ n}.
The set S is the input domain for the new kernel de-
fined as follows.

Definition 2. Let kq : S × S → R such that

kq(X ,Y) =
1

��′

�∑
i=1

�′∑
j=1

〈
xi,yj

〉q
,

where X ,Y ∈ S and q ∈ N. We shall refer to kq as the
qth order mean polynomial kernel.

From the definition, we can say that the uncentered
covariance matrix is directly used as a feature vector
when q = 2. This can be shown by verifying that
the Euclidean inner product among vectorized uncen-
tered covariance matrices is equal to the second order
mean polynomial. Let us denote the uncentered co-

variance matrices of X and Y by Σx =
1

�

∑�

i=1
xix

�

i

and Σy =
1

�′
∑�′

j=1
yjy

�

j , respectively. By defining a

feature mapping φ(X ) = vec(Σx), we get

〈φ(X ),φ(Y)〉 = 〈vec(Σx), vec(Σy)〉 = tr
(
ΣxΣy

)

=
1

��′

�∑
i=1

�′∑
j=1

tr
(
xix

�

i yjyj
�
)
=

1

��′

�∑
i=1

�′∑
j=1

〈
xi,yj

〉2
,

(1)

which is kq when q = 2. Thus, all information con-
tained in the uncentered covariance matrices are pre-
served and utilized.
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4 Mean polynomial kernel and Projection
kernel relationship

We now present a connection between the proposed
mean polynomial kernel above and the Projection ker-
nel defined earlier. Typically, in the case of sequence
recognition, Grassmann kernels are considered as ker-
nel functions for principal subspaces of data points in
sequences. To compute the value of the Projection ker-
nel for two sequences X and Y , we first perform eigen-
decomposition of two symmetric matrices Σx and Σy.
It can be shown that the m major eigenvectors are the
bases of the m-dimensional principal subspaces. We
obtain the value of the Projection kernel between the
two principal subspaces by storing the m major eigen-
vectors in the columns of the d ×m matrices Ux and
Uy.

The following equality constructs the connection be-
tween the mean polynomial kernel and the Projection
kernel:

kPROJ(Ux,Uy) =
〈
vec(Σ′

x), vec(Σ
′

y)
〉
, (2)

where we define Σ
′

x = UxU
�

x and Σ
′

y = UyU
�

y . In-
deed, if Σ′

x and Σ
′

y are the uncentered covariance ma-
trices of which the m major eigenvalues are replaced
with one, and the rest of the eigenvalues are deleted,
then we obtain

kPROJ

(
Ux,Uy

)
=

∥∥U�

x Uy

∥∥2

F
= tr

(
U�

x UyU
�

y Ux

)

=tr
(
UxU

�

x UyU
�

y

)
= tr

(
Σ

′

xΣ
′

y

)
=

〈
vec

(
Σ

′

x

)
, vec

(
Σ

′

y

)〉
.

Comparison between equations (1) and (2) implies that
the Projection kernel potentially loses the information
on the importance of each dimension of the principal
subspaces and all the information on their orthogonal
complements, whereas the second order mean polyno-
mial kernel keeps all information in the uncentered co-
variance matrices. Hamm and Lee [6] extended the
Projection kernel so that the information of the scale of
each dimension in linear subspaces is preserved. How-
ever, their kernel still disregards the information in the
orthogonal complement.

5 Face membership verification
performance

5.1 Dataset and experimental settings

The MOBIO database [11] was used for the ex-
periments. The database contains video data taken
from video sessions divided into two: six sessions for
Phase I and six sessions for Phase II. We only utilized
data from 25 subjects and the six sessions from Phase
I. Each session contains 21 image sequences of vary-
ing length. For the experiments, we set the sequence
length to 25 images, where each image is a cropped
facial image of the subject, obtained using a face de-
tection program, transformed to gray scale and resized
to 25×25 pixels. Among the 25 subjects, 10 were ran-
domly selected and labeled as ‘member’ (+1), and the
remaining 15 as ‘nonmember’ (−1).
Two methods were employed: one using kernels with

SVM and the other one using GD-MSM. For the first
method, three types of kernel functions were utilized:

MP PROJ BC GDMSM−CD GDMSM−SD
0.7

0.75

0.8

0.85

 

 

AUC
Accuracy
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Figure 2. Average performance of all methods.

the Projection and Binet-Cauchy kernels, which are
both Grassmann kernels, and the proposed kernel. For
the GD-MSM, eight metrics were used for compari-
son: average distance, Binet-Cauchy metric, Geodesic
distance, maximum correlation, minimum correlation,
Frobenius norm based Procrustes distance, 2-norm
based Procrustes distance, and Projection metric, as
defined in [16]. For the SVM setting, 6-fold cross-
validation was employed to evaluate the performance
of the kernels such that one session per subject is used
as test data while the remaining five sessions are used
for training. For evaluating the performance of each
method, the area under the ROC curve (AUC), ac-
curacy, and F-measure values were obtained. Higher
values of these performance measures indicate better
quality of classifier.
Similar to the polynomial kernel degree, the value

of q of the mean polynomial kernel also controls the
flexibility of the classifier. In the experiments, the val-
ues of q were only varied from one to five since, as in
polynomial kernels, higher values may tend to overfit
data. This value, together with the regularization pa-
rameter C for SVM, was set using a grid search, where
q ∈ {1, . . . , 5} and C ∈ {100, 101, 102, 103, 104, 105},
by 3-fold cross-validation on the training data for each
cross-validation set. The pair (q, C) was chosen such
that the highest accuracy value is obtained. Similarly
for the Grassmann kernels, the value of C and the
dimension of the subspace were simultaneously deter-
mined using a grid search on all possible pairs (m,C),
where m varies from one to ten. As for the mutual
subspace method, the dimension of the subspace was
varied from one to ten, and was selected as one yielding
the highest accuracy using the training data.

5.2 Results

The average AUC, accuracy, and F-measure values
for all six cross-validation sets are shown in Figure 2.
The labels GDMSM-CD and GDMSM-SD correspond
to the class and subject-wise dictionaries, respectively,
while the first three methods are SVM used with the
mean polynomial (MP), the Projection kernel (PROJ)
and the Binet-Cauchy kernel (BC), respectively. The
mean polynomial obtains the highest AUC, accuracy
and F-measure values (0.866, 81.5% and 0.783, respec-
tively) among all methods. The second best AUC
value was obtained using BC kernel in GK-SVM at
0.845. The Projection kernel attained an accuracy
rate of 79.9% following the proposed kernel. And an
F-measure of 0.776 from employing the class-wise dic-
tionary for GD-MSM was the second best among all
methods. The results presented for the GD-MSM are
the best among all eight metrics used, which is inciden-
tally the maximum correlation for both methods using
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class-wise and subject-wise dictionaries. Hence, it fol-
lows that the mean polynomial kernel performs bet-
ter than the GD-MSM regardless of the metric used.
In addition to this, it was also found that for most
cross-validation sets, the BC kernel performs well when
m = 3 and C = 103, the PROJ kernel when m = 7
and C = 102, and the proposed kernel when q = 3 and
C = 105.

Another advantage of the proposed kernel is its low
computational cost. The CPU time for the compu-
tation of the mean polynomial kernel matrix for any
value of q is around 383 seconds. As for the Grassmann
kernels, when m = 5, CPU time is around 1.21 × 104

seconds, and when m = 10, the Projection kernel ma-
trix takes around 1.24×104 seconds, and 1.25×104 sec-
onds for the Binet-Cauchy kernel matrix. Even for low
values of m, processing time is at least 1.19× 104 sec-
onds. Moreover, should the dimension d of the image
increase, their cost will also increase more drastically
compared to the mean polynomial kernel.

6 Discussion

In this paper we proposed a new kernel for face mem-
bership authentication when data at hand is modeled
as a subspace of the image space, such as data in the
form of sequences of video frames or sequences of im-
ages. Data images were treated as matrices of pixel
intensities and these values were used as data features.
We conclude this paper by discussing an extension

of the mean polynomial kernel. An interesting exten-
sion can be obtained by replacing the sample mean
of

〈
xi,yj

〉q
with the expected value with respect to

a probabilistic distribution: k′q(X,Y ) = E
(
〈x,y〉q

)
.

From this, the original mean polynomial kernel (Defi-
nition 2) can be derived as a special case when px(x) =
1

�

∑�

i=1
δ
(
x−xi

)
and py(y) =

1

�′

∑�′

i=1
δ
(
y−yi

)
, where

δ(·) is the Dirac delta function.
Another choice of a probabilistic distribution can be

Gaussian mixture. Suppose we are given the Gaus-

sian mixture pz(z) =
∑�

i=1
πz,iN

(
z;μz,i,Σz,i

)
, where

� is the number of Gaussian components for the prob-
abilistic distribution pz, πz,i is the mixing coefficient
satisfying

∑n

i=1
πz,i = 1 , and μz,i and Σz,i are the

mean vector and covariance matrix of the ith Gaus-
sian component, respectively. The second order mean
polynomial kernel can be readily computed as

k′
2
(px, py) =

�∑
i=1

�′∑
j=1

πx,iπy,j

((
μ�

x,iμy,j

)2
+

tr
(
Σx,iΣy,j

)
+ μ�

x,iΣy,jμx,i + μ�

y,jΣx,iμy,j

)
.

This example includes the original definition of the
mean polynomial kernel in Definition 2, which can be
shown by letting

πx,i = 1/�, μx,i = xi, Σx,i = σ2

x,iI,

πy,j = 1/�′, μy,j = yj , Σy,j = σ2

y,jI,

for all i ∈ N� and j ∈ N�′ , and taking the limit as
σ2

x,i, σ
2

y,j → 0. When one wishes to weight each frame
in image sequences, the weights can be set to πx,i or

πy,j . Positive σ2

x,i or positive σ2

y,j can be used to rep-
resent uncertainties in observations. Such extensions
bring interesting future work.

References

[1] V. Belhumeur, et al., Eigenfaces vs. fisherfaces: Recog-
nition using class specific linear projection, IEEE Trans
PAMI 19(7) (July 1997), 711–720.

[2] O. Deniz, et al., Face recognition using independent
component analysis and support vector machines, Pat-
tern Recogn. Lett. 24 (2003), 2153–2157.

[3] K. Fukui and O. Yamaguchi, Face recognition using
multi-viewpoint pattern for robot vision, Int. Symp.
Robotics Research, 2003, pp. 192–201.

[4] G. Guo, et al., Support vector machines for face recog-
nition, Image Vision Comput. (2001), 631–638.

[5] J. Hamm and D. Lee, Grassmann discriminant analy-
sis: a unifying view on subspace-based learning, ICML,
2008, pp. 376–383.

[6] J. Hamm and D. Lee, Extended Grassmann kernels for
subspace-based learning, NIPS, 2009.

[7] R. Jafri and H.R. Arabnia, A survey of face recognition
techniques, JIPS (2009), 41–68.

[8] T.-K. Kim, et al., Learning over sets using boosted
manifold principal angles (BoMPA), British Machine
Vision Conf., 2005, pp. 779–788.

[9] S.Z. Li, et al., Kernel machine based learning for multi-
view face detection and pose estimation, ICCV, 2001,
pp. 674–679.

[10] Y. Li, et al., Support vector machine based multi-view
face detection and recognition, Image Vision Comput.
(2004), 413–427.

[11] C. McCool, et al., Bi-modal person recognition on a
mobile phone: Using mobile phone data, IEEE ICME
Workshop on Hot Topics in Mobile Multimedia, 2012.

[12] M. Nishiyama, et al., Face recognition with the multi-
ple constrained mutual subspace method, 5th Int. Conf.
on Audio- and Video-based Biometric Person Authen-
tication (AVBPA), 2005, pp. 71–80.

[13] H. Sakano and N. Mukawa, Kernel mutual subspace
method for robust facial image recognition, Int. Conf.
on Knowledge-Based Intell. Eng. Sys. And App. Tech,
2000, pp. 245–248.

[14] S. Satoh, Comparative evaluation of face sequence
matching for content-based video access, Int. Conf. Au-
tomatic Face and Gesture Recognition, 2000, pp. 163–
168.

[15] G. Shakhnarovich, et al., Face recognition from long-
term observations, European Conf. Computer Vision
(ECCV), 2002, pp. 851–868.

[16] R. Shigenaka, et al., Face sequence recognition using
Grassmann distances and Grassmann kernels, IJCNN,
2012, pp. 1–7.

[17] M. Turk and A. Pentland, Eigenfaces for recognition,
Journal of Cognitive Neuroscience 3(1) (1991), 71–86.

[18] L. Wolf and A. Shashua, Learning over sets using ker-
nel principal angles, J. Mach. Learn. Res. 4 (2003),
913–931.

[19] O. Yamaguchi, et al., Face recognition using temporal
image sequence, Int. Conf. Automatic Face and Ges-
ture Recognition, 1998, pp. 318–323.

[20] Q. Yang and X. Tang, Recent advances in subspace
analysis for face recognition, SINOBIOMETRICS,
2004, pp. 275–287.

4


