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Abstract

In this work, we present a fingertip tracking frame-
work which allows observation of finger movements
in task space. By applying a multi-scale edge extrac-
tion technique, an edge map is generated in which low
contrast edges are preserved while noise is suppressed.
Based on circular image features, determined from the
map using Hough transform, the fingertips are accu-
rately tracked by combining a particle filter and a sub-
sequent mean-shift procedure. To increase the robust-
ness of the proposed method, dynamical motion mod-
els are trained for the prediction of the finger displace-
ments. Experiments were conducted on various image
sequences from which statements on the performance
of the framework can be derived.

1 Introduction
Towards an intuitive and natural interface to ma-

chines, markerless human observation has become a
major research focus during the past years. Regard-
ing coarse granular human tracking incorporating the
torso, arms, head, and legs, considerable progress has
been achieved whereas human hand tracking still re-
mains an unresolved issue, although the hand is con-
sidered to be one of the most crucial body parts re-
garding the interaction with other humans and the en-
vironment.

Regarding markerless tracking and detection of hu-
man body parts, most systems have limited sensor ca-
pabilities which in common case are limited to a stereo
camera setup. Full hand tracking approaches in joint
angle space have been proposed in [1],[2],[3]. However,
due to the highly complex structure of the hand whose
motion involves 27 DoF, tracking can be only achieved
at a low frame rate or on multiple views from different
perspectives.

Using stereo vision, a reasonable solution lies in re-
ducing dimensionality of the problem by shifting from
joint angle space into task space. In [4], a finger track-
ing approach based on Active contours is presented for
air-writing. The target to be tracked consists of a con-
tour which is laid around the pointing finger. As a
result, since no reliable statement can be made on the
actual fingertip position, one has to assume that finger
pose is not changing.

Hence, based on curvature properties, in [5] finger-
tips are detected within a contour which is extracted
from skin blob tracking. A more elaborate approach
is presented in [6] where particles are propagated from
the center of the hand to positions close to the con-
tour. Intersection of the contour with line segments at
particles and examination of the transitions between
non-skin and skin-area indicate whether a particle rep-
resents a fingertip. However, this method is specifically
designed to detect tips of stretched fingers. Based on

multi-scale color features [7] introduces a hierarchical
representation of the hand consisting of blobs of dif-
ferent sizes with each blob representing a part of the
hand. The blob features are matched with a number
hierarchical 2D models each incorporating a specific
finger pose. Therefore, tracking is accomplished under
the assumption that the local finger poses regarding
the hand remains fixed. In order to implement a con-
tinuous fingertip tracking method, we would like to
rely on prominent features which can be extracted at
any time of an image sequence. In [8], for detecting
a guitarist’s fingertips, circular features are proposed
which are localized by performing a circular Hough
transform. For the same application, [9] defined semi-
circular templates which are used to find the fingers’
positions.

In our work, we adopt the concept of circular fea-
tures to tackle the more complex problem of track-
ing fingertips of a freely moving hand, where overlap
of finger and palm occur frequently leading to diffi-
culties regarding the robust extraction of these fea-
tures. For tracking, we combined particle filtering with
a mean-shift algorithm. In addition, a dynamical mo-
tion model for predicting was trained to enhance the
robustness of the proposed framework.

The paper is organized as follows. Section 2 de-
scribes the feature extraction consisting of an edge
detection step and the Hough transform. Details on
the tracking procedure performed on the resulting map
are given in Section 3. Subsequently, first experiments
with the framework are explained in Section 4. In Sec-
tion 5, the work is summarized and notes to future
works are given.

2 Feature Extraction
In order to generate the edge image, a skin color

segmentation is performed for extracting the hand and
finger regions. Morphological operators are applied on
the segmented image to eliminate noise and to produce
a uniform region. To detect the edges in this prepro-
cessed image, image gradients are calculated on various
scales.

2.1 Multi-Scale Edge Extraction
Considering the problem of fingertip tracking, due to

small intensity variances between different parts of the
hand, e.g. the fingernail and the skin, respectively, the
finger regions and the palm, it is desired to detect edges
where contrast can vary over a broad range. Depending
on the parameters, applying standard algorithms, such
as the Canny edge detectors on a wider scale, leads to
an edge image where numerous, false edges occur. To
preserve low contrast edges in certain areas while re-
ducing noise close to high-contrast edges, based on the
work of [10], we implemented a filter approach consist-
ing of a steerable Gaussian derivative filter on multiple
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Figure 1. Left: Original input image. Cen-
ter/Left: Color segmented image. Center/Right:
Edge image using Canny detector. Right: Edge
image using the method proposed in Section 2.1.

scales. The basis filter for x is defined as follows:
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with sl representing the standard deviation and α the
significance level for an image with R pixels which de-
fines an upper boundary for allowed misclassification
of image pixels. To take into account local intensity
and contrast conditions, we focus on local signal noise
in a specific region rather than on global sensor noise.
Therefore, Eq. 3 depends on the local standard devia-
tion sl calculated within a 2σmax

k ×2σmax
k -neighborhood

where σmax
k denotes the largest scale being examined.

Hence, we calculate each gradient at the minimum re-
liable scale σmin

k where the likelihood of error due lo-
cal signal noise falls below a standard tolerance. This
guarantees that a more accurate gradient map is esti-
mated which is less sensitive to signal noise and errors
caused by interference from nearby structures. The
edge image obtained from the map is depicted in Fig. 1.

2.2 Hough Transformation for Circle Detection

The circle features representing the N fingertips are
detected by applying a Hough transform with radius r.
For each edge point (x,y) with known direction in the
form of a rotation angle θ , a vote is assigned to possible
circle feature positions (u,v) in two-dimensional Hough
space IH according to:

IH(u,v) = IH(u,v)+1 (4)

with u = x±rcos(θ) and v = y±rsin(θ). Unfortunately,
curves around the fingertips do not always feature per-
fect circular arcs. To cope with noisy and slightly de-
formed curves, the voting is performed for a set of radii

R = {−m · 1.1 · r, . . . ,m · 1.1 · r} with m ∈ N whereby a
range of pixels along the edge tangent is considered
during the voting process. In order to increase the
robustness of the tracking algorithm, a density distri-
bution is formed in Hough space by convolving IH with
a Gaussian kernel G(u,v; r

2
).

Since the hand motion occurs in 3D Euclidean space,
a fixation of r is only valid if movement of the fingertip
in direction of the z-axis of a camera is excluded during
the tracking. Adaptation of r in each frame, allows to
track fingers in all directions. Based on the generated
density distribution in frame t a radius estimate r̂t is
determined by applying an Expectation Maximization
algorithm. Further details are given in Section 3.3.

3 Tracking Fingertips

3.1 Prediction

Providing a prediction on the movement of the ob-
jects to be tracked increases the robustness of a statis-
tical tracking framework. We train dynamical motion
models in the form of a second-order auto-regresssive
(AR) process as proposed in [4], which is described as
follows:

qt − q̄ = A1(qt−1− q̄)+A2(qt−2− q̄)+b0ωk (5)

where qt ∈ R
D denotes the current configuration, q̄

the mean configuration, and ωk ∈ [0,1]. To learn the
AR parameters A1, A2 ∈ R

D×D and b0 ∈ R
D, training

data is provided in the form of a configuration se-
quence Q = {q′0, . . . ,q′M} whereas the sequence is gener-
ated by manual labeling of fingertips in each frame of
a recorded image sequence.

Two AR models are trained to provide predictions
for the local fingertip movement concerning a static
hand pose as well as the movement of the hand itself.
Based on the assumption that the motion of each finger
is influenced by the motion of the neighbored fingers,
the first model is trained with training data whose in-
stances q′i ∈Q with D = N consists of the length of the

vector v
j, j+1
t = q

j+1 mod N
t − q

j
t between the fingertip j

and j +1 mod N:

q′i( j) = ‖v j, j+1
t ‖ j = 1, . . . ,N. (6)

For finger j, this leads to following displacement vector:
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j
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1

2

(
j
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)
+b

j
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(7)

The second model which considers the global move-
ment of the mean position of all fingertips pm is trained
with a data set formed of q′i = pm with D = 2 resulting
into an overall displacement:

v̂
j
t = A2

1(pm
t − pm

t−1)+A2
2(pm

t−1− pm
t−2)+bm

0 ωk + v̄
j
t . (8)

Due to the coupled fingertip movements, the models
behave well resulting in reasonable prediction of the
finger displacements which supports the state estima-
tion in the ensuing tracking procedure.

3.2 Particle Filter Tracking

For the proposed fingertip tracking framework, a
state hypothesis s of a particle (s,w) consists of the
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N fingertip positions of the hand with each position
being denoted by the coordinates (x,y) within the im-
age. Particle filtering is an iterative algorithm where,
first, at time t M samples are drawn from a set of pre-
vious particles Xt−1 = {(si

t−1,w
i
t−1)} proportionally to

their likelihood wi
t−1. Subsequently, from each drawn

sample a new state hypothesis si
t is generated. Adding

a Gaussian random variable ω and the displacement
vector v̂ j from Eq. 8, si

t can be written as:

si
t = si

t−1 + v̂t +ω. (9)

To determine a particle set Xt , for each si
t the likeli-

hood wi
t is computed. In order to compute the weights

for the new set of particles, one has to approximate
the likelihood function p(zt |st) with zt representing the
current observation. Our approximation of p(zt |st) is
based on two cues: a contour and a distance cue. The
contour cue is derived by exploiting the external energy
functional Eimg of a contour Ci

t obtained by connecting
the single points in si

t according the finger order. The
Eimg is determined in terms of an edge image ZE

t which
is constructed by drawing lines between the set of max-
imum bins ZV

t that can be found in IH . As a result, the
likelihood function can be written as:

pc(zt |st) ∝ wc(st) = exp

{−Eimg(Z
E
t ,Ct)

σ2
c

}
. (10)

The distance cue is calculated from the Euclidean dis-
tance between si

t and ZV
t which consists of the sum of

minimal distances between si
t( j) and ZV

t . Based on this
cue, the likelihood function can be defined as

pd(zt |st) ∝ wd(st) = exp

{
−∑

N
j=1 min(‖st( j)−ZV

t ‖)
Nσ2

d

}
.

(11)

The final likelihood function is constructed from Eq. 10
and Eq. 11, hence, we define the computation of
weights as follows:

wi
t =

√
wc(s

i
t)wd(s

i
t)

∑
M
k=1

√
wc(s

k
t )wd(s

k
t )

. (12)

One obtains a current state estimate of the fingertip
configuration by evaluating the following sum:

st =
M

∑
i=1

wi
ts

i
t . (13)

Figure 2. Left: Original input image. Center:
Visualization of the Hough space. Right: Gener-
ated contour for the particle filter tracking. The
particle with the highest likelihood (black dot-
ted line) and the particle with the lowest (white
dotted line) are depicted.

Further details concerning the particle filter algorithm
can be found in [11].

3.3 Mean-Shift

To obtain more accurate position estimates, a mean-
shift algorithm is applied to move the estimated finger-
tip position p j = st( j) towards the peak of local den-
sity distribution. We adopted the EM-like mean-shift
algorithm proposed in [12] which in addition provides
the possibility to estimate the covariance of the local
density distribution. The covariance estimation allows
us to adapt the radius r corresponding to the current
circular image features. Hence, taking into account
movement in the depth of the camera, for tracking cir-
cular features in Hough space one has to incorporate
an adaptation of radius rt . Under the assumption that
the distribution can be modeled as a Gaussian, we want
to find parameters p̄ j and V̄j representing center and
covariance matrix of the distribution that maximize
following function for M independent samples:

f (p̄ j,V̄j) =
M

∑
i=1

G(pi; p̄ j;V̄j)IH(pi), (14)

which can be solved iteratively by, first, calculating λi

according to:

λi =
G(pi; p̄ j;V̄j))IH(pi)

∑
M
i=1 G(pi; p̄ j;V̄j)IH(pi)

. (15)

A new estimation for the center can be derived from
followin equation:

p̂ j =
M

∑
i=1

λi pi (16)

whereas a covariance matrix estimation is obtained by
evaluating following term:

V̂j = c
M

∑
i=1

λi(pi− p̄ j)(pi− p̄ j)
T (17)

with c being a constant. If convergence is achieved,
the radius is determined from the covariance matrix.

4 Results

The proposed fingertip tracking framework was ap-
plied on several image sequences which were captured
with a static stereo camera setup and a resolution of
R = 640×480 pixels. For edge extraction, the method
presented in Section 2.1 is applied with σk = 4,2,1,0.5

and α = 0.5. Currently, initialization of the tracking is
done manually by defining a region In

H where finger n is
to be found. Using the Hough transform with different
radii constructed with m = 3, The maximum bin in Ii

H
is labeled as finger n according to the finger order n =
{T humb = 0, Index = 1,Middle = 2,Ring = 3,Pinkie = 4}.

Taking into account the predicted displacements
of the fingers, the particle filter tracking algorithm
with minimum 600 particles shows good performance.
Around 3 mean-shift iterations needed to achieve con-
vergence, The number of iterations for the subsequent
mean-shift algorithm depends on the numbers of par-
ticles meaning less particles result in more mean-shift
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Figure 3. Images of the tracking results. Upper
row: Simultaneous closing of the fingers. Lower
row: Sequential flexing of the fingers. Labeling
of fingertips: Thumb (green), index (light blue),
middle (dark blue), ring (pink), and pinkie (red).

iterations and vice versa. Exploiting the combination
of both, reasonable accuracy of ≈ 7 pixels mean de-
viation is achieved for translation movements. For a
rotation, opening and closing movement, the error in-
creases up to 20 pixels. These measurements are de-
picted in Fig. 4. The tracking procedure fails if a finger
is lost, which is the case if the movements are too fast.

In case of failure, currently, a very rudimentary re-
initialization is performed consisting of a search for
maximum bins in the vicinity of the last known es-
timation and arranging of the fingers according ac-
cord position polar space, assuming that fingers are
arranged clockwise, respectively counter clockwise, de-
pending on the hand that is observed. Since this as-
sumption is not valid for several finger poses, hence,
this might lead to mislabeling.

Since this algorithm operates on monocular images,
for each view a tracking instance is created whereas the
3D finger positions are calculated by exploiting epipo-
lar geometry. The presented framework is capable of
online tracking of fingertip motion with a frame rate
of 15 Hz on a 2.40 GHz dual core CPU. Sample images
during the tracking process are depicted in Fig. 3.

5 Conclusion

In this work, we presented a fingertip tracking which
allows observation of fine granular human actions such
as grasping in an efficient manner. Using Hough trans-
form and a combination of particle filter and mean-
shift tracking, circular features representing the fin-
gertips could be localized and tracked. Currently, the
proposed framework is applied for capturing human
grasping movements for online imitation learning us-
ing the on-board stereo camera pair of a robot.

However, in the experiments we conducted, we were
able to observe that the error on the fingertip local-
ization increases, when the hand performs movements
which go beyond translation. These can be led back
to the use of a single dynamical motion model for the
prediction. In the near future, the fingertip prediction
module will be implemented in the form of multiple in-
tertwined motion models to provide better predictions.
Concerning the motion model of the hand, we realized
that it needs to be extended by an angular dimension
to cover the hand rotation. To enable full online obser-
vation of the human upper body the fingertip tracking
will be integrated into an upper body tracker and its
implementation will be improved to raise its efficiency.
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Figure 4. Error plot for a sequence of four hand
and finger movements: Translation and rotation
of the hand, close and open movement of fingers.
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