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Abstract

The Lucy-Richardson Algorithm is a well-known it-
erative method for the deconvolution of images con-
volved with a known point spread function. It is derived
from a statistical point of view as it converges to the
maximum-likelihood solution under the condition that
the data follow a Poisson distribution. This assump-
tion holds true for images detected by a digital camera.
However, there are images not following a Poisson but
rather a noncentral chi-square distribution. Here we
show an adaption of the Lucy-Richardson algorithm to
be used for data following this probability distribution.
Its application to simulated and real data from an imag-
ing radar sensor shows its advantage over the original
algorithm.

1 Introduction

Images recorded by an arbitrary device are blurred
by the influence of a non-perfect recording device.
This process can be modeled as the convolution of
the unblurred image with a known or unknown point
spread function (PSF). E. g., [1] used a convolutional
model for the diffraction of images acquired by a
cryogenic infrared focal array. The authors derived
the PSF as a combination of an atmosphere transfer
function, an optical transfer function and a detector
transfer function. [2] modeled the blurring of barcode
images by camera shake by convolution as well, but
without exact knowledge of the PSF. Beyond that, the
detection of objects by a scanning radar sensor can be
described as the convolution of the objects with the
radar antenna beam [3].

Radar sensors have been used in vehicles for over a
decade in order to implement several driver assistance
systems. E. g., adaptive cruise control needs infor-
mation about the distance and the relative speed of
preceding vehicles, which both can be measured by a
radar sensor very accurately. Future driver assistance
systems avoiding or mitigating crashes will also need
information about the width of vehicles ahead in order
to tell whether an evasion by the driver is still possible
or a crash is unavoidable. As the installation space in
a car is very limited to a radar, the antenna aperture
D is limited as well, leading to a wide antenna beam

B = sinc2
(
φD

λ

)
(1)

with the radar wavelength λ and the azimuth angle
φ. The convolution of objects with the wide antenna
beam makes the width and the lateral position of other
vehicles hard to determine (see Figure 1).

Figure 1. Car in the image of an automotive scan-
ning radar sensor.

As convolution tends to obscure important informa-
tion, so-called deconvolution methods try to reverse
the convolution. Practical examples can be found in
[4]. Although deconvolution often achieves good re-
sults, an omnipresent problem coming with it is noise
amplification. A method among many others trying
to cope with it is shown in [5]. The autors combined
Wiener adaptive filtering with the Lucy-Richardson al-
gorithm and restored an image of a barcode taken by
the camera of a mobile phone. [6] combined dual-tree
complex wavelet denoising with Lucy-Richardson de-
convolution. [7] modified the iteration step so that it
does not cause changes in image areas with predomi-
nant noise. [8] proposed a combination of the Lucy-
Richardson algorithm with a regularizing constraint
based on total variation leading to an improved de-
convolution result.
Here, we propose a non-heuristic adaption of the Lucy-
Richardson algorithm optimized for noncentral chi-
square distributed data. In section 2, we describe the
original Lucy-Richardson algorithm. We then present
an adaption of the algorithm to noncentral chi-square
distributed data. Afterwards we test the adaption on
simulated (section 4) and on real data from an imaging
radar sensor (section 5). We end with a brief conclu-
sion (section 6).
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2 The Lucy-Richardson algorithm

The Lucy-Richardson deconvolution is an iterative
algorithm optimized for Poisson distributed data
[9], [10]. Poisson distribution can be assumed in the
case that an image is recorded by a digital camera [11].

In the absence of noise, a blurred image i(x) is
formed from an unblurred image o(x′) by the
convolution

i(x) =

∫
o(x′)s(x, x′)dx′ (2)

with the PSF s(x, x′) [4]. In the presence of Pois-
son noise, the probability density function (PDF) of
the measured intensity of a noisy pixel i(x) around its
mean i(x) is

P (i|i) = i
i

i!
e−i. (3)

The log likelihood of an entire set of data values is

lnL =

∫
i(x) ln i(x)− i(x)− ln (i(x)!) dx. (4)

To find the maximum-likelihood solution, we take
the derivative with respect to o and require it to be
zero:

∂ lnL

∂o(x′)
=

∫ [
i(x)

i(x)
− 1

]
s(x, x′)dx !

= 0. (5)

In this case, the iteration factor of the Lucy-
Richardson algorithm

ô(k+1)(x′) = ô(k)(x′)

∫ [
i(x)

î(k)(x)

]
s(x, x′)dx∫

s(x, x′)dx
(6)

is unity [4] with

î(k)(x) =

∫
ô(k)(x′)s(x, x′)dx′ (7)

where ô(k) is the kth estimate of the unblurred image.
So if the algorithm converges, it converges against the
maximum-likelihood solution so that î→ i.

3 Adaption to noncentral chi-square dis-
tributed data

The assumption of Poisson distributed data does not
hold true for all kinds of images. Images from radar
sensors consist of values representing the backscattered
power from each range and azimuth cell. The distri-
bution of the power of radar signals can be modeled
as a noncentral chi-square distribution [12], [13]. This
distribution with a degree of freedom n arises if the
squares of n normally distributed random variables are
summed up. In the case of a noncentral chi-square dis-
tribution with two degrees of freedom, equation 3 has
to be

P (i|i) = 1

2σ2
e

(−(i(x)+i(x))

2σ2

)
I0 (a) (8)

with

a =

√
i(x)i(x)

σ2
(9)

where I0 is the modified Bessel function of the first
kind with order zero. Note that in this case i(x) is
not the mean of the noncentral chi-square distribution,
nevertheless it depends on the means of the underlying
normal distributions:

i = μ2
S + μ2

N . (10)

Here we assume the case of a resulting value i
consisting of a signal part with the mean voltage μS

and a noise part with the mean voltage μN . Under
the assumption of a mean noise voltage of zero, i is
the power of the signal part, which is the value of
interest here.

The log likelihood (equation 4) is

lnL =

∫
ln

1

2σ2
− i(x) + i(x)

2σ2
+ ln I0 (a) dx. (11)

Taking the derivative with respect to o and requiring
it to be zero in analogy to equation 5 leads to

∂ lnL

∂o(x′)
=

∫
−s(x, x′)

2σ2
+

I1 (a)

I0 (a)

√
i(x)s(x, x′)

2σ2
√
i(x)

dx

!
= 0.

(12)

Then, the iteration step according to equation 6 is

ô(k+1)(x′) = ô(k)(x′)

∫ I1(â)
I0(â)

√
i(x)s(x, x′)dx

∫
s(x, x′)

√
î(k)(x)dx

(13)

with

â =

√
i(x)̂i(k)(x)

σ2
. (14)

This modification of the iteration factor adapts the
algorithm to noncentrally chi-square distributed data.

4 Simulation results

In order to make statements about the benefit of the
algorithm, its performance is tested on simulated con-
volution data. For this purpose, an unblurred image
function is convolved with an antenna diagram (PSF,
see Figure 2) calculated from equation 1. Noncentrally
chi-square distributed noise is added to the result (see
Figure 3). The noisy signal is then deconvolved by
the adapted Lucy-Richardson algorithm. In this con-
nection, the relaxation method proposed in [8] is in-
cluded. The result is shown in Figure 4 compared
to the result from an original Lucy-Richardson algo-
rithm. Especially in low signal-to-noise ratio regions
the chi-square adapted algorithm has the edge over its
original form. Figure 5 shows the root mean squared
error (RMSE) between the deconvolution result and
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Figure 2. Unblurred image and point spread func-
tion (PSF) used for simulation.

the unblurred image function (ground truth) as a func-
tion of the number of iterations. The adapted Lucy-
Richardson algorithm outperforms its original as there
is no tendency to the noise amplification in areas where
the unblurred image function is zero.
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Figure 3. Result of the convolution and the addi-
tion of noncentrally chi-square distributed noise.

5 Real data results

In the next step, the performance of the algorithm is
examined for real data. For this purpose, radar images
from an experimental scanning imaging radar sensor
mounted on a vehicle (Figure 7) are used. In regard
to the principle of measurement, the sensor is similar
to today’s mechanically scanning adaptive cruise con-
trol radar sensors. The parameter σ is estimated from
the distribution of power values in cells without any
radar targets (see Figure 6). Consequently no heuris-
tic parameter is needed for the algorithm, making it
universally valid in the case of noncentrally chi-square
distributed data.
As a common traffic scene, the approach towards a

still standing vehicle and a pedestrian standing next
to it is examined (Figure 8). Figure 9 shows the rela-
tive power data from the radar sensor for the distance
of 61m from the sensor, where the standing vehicle
and the pedestrian are situated. Whereas the width of
the vehicle is difficult to determine from the original
data, it can be seen better after the application of de-
convolution. The original Lucy-Richardson algorithm
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Figure 4. Result from the adapted Lucy-
Richardson algorithm compared to the result
from its original form. Note the still detectable
small target at −7◦.
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Figure 5. Root mean squared error (RMSE) be-
tween the deconvolution result and the unblurred
image function (ground truth) as a function of
the number of iterations. The adapted Lucy-
Richardson algorithm outperforms the original
implementation.
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Figure 6. Distribution of power values in cells
without any radar targets.

and its chi-square adaption lead to a very similar re-
sult in the area of the car and the pedestrian. In the
area of empty space, the chi-square adaption annihi-
lates the noise nearly completely, whereas the original
implementation does not.
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Figure 7. Experimental imaging radar sensor.

Figure 8. Vehicle and pedestrian detected by the
experimental imaging radar sensor.

-8-6-4-202468
-700

-600

-500

-400

-300

-200

-100

0

lateral position y [m]

re
l. 

am
pl

itu
de

 [d
B

]

 

 

data from radar sensor
original algorithm
chi-square adapted algorithm

-8-6-4-202468
-30

-25

-20

-15

-10

-5

0

5

10

15

20

lateral position y [m]

re
l. 

am
pl

itu
de

 [d
B

]

 

 

data from radar sensor
original algorithm
chi-square adapted algorithm

Figure 9. Intensity of the rear of a vehicle and
a pedestrian (Figure 8) in a distance of 61m
over the lateral coordinate y (general and detailed
view).

6 Conclusion

We have presented a modification of the Lucy-
Richardson deconvolution algorithm adapted to non-
centrally chi-square distributed data. The Lucy-
Richardson algorithm converges to the maximum-
likelihood solution under the condition that the under-
lying data follow a Poisson distribution. In analogy to
this derivation, the iteration factor is modified so that
the algorithm converges to the maximum-likelihood
solution for the case of noncentrally chi-square dis-
tributed data. Especially for low signal-to-noise ratios
the adapted algorithm outperforms the original one
used on simulated data as well as on real data from
an automotive imaging radar sensor. Future work can
include the combination of this adaption with other
Lucy-Richardson adaptions concerning e. g. noise re-
duction or convergence speed.
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