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Abstract

We present a system for augmenting depth cam-
era output using multispectral photometric stereo. The
technique is demonstrated using a Kinect sensor and
is able to produce geometry independently for each
frame. Improved reconstruction is demonstrated using
the Kinect’s inbuilt RGB camera and further improve-
ments are achieved by introducing an additional high
resolution camera. As well as qualitative improvements
i reconstruction a quantitative reduction in temporal
noise is shown. As part of the system an approach is
presented for relaxing the assumption of multispectral
photometric stereo that scenes are of constant chro-
maticity to the assumption that scenes contain multiple
piecewise constant chromaticities.

1 Introduction

Depth cameras are becoming increasingly accessi-
ble and their resolution and accuracy is continually
improving. Examples are time-of-flight cameras and
triangulation-based devices, such as the Kinect [1].
Both produce low resolution range images exhibiting
high frequency noise. In this paper we propose the
use of photometric stereo to augment the output from
depth cameras with the two aims of (1) reducing high
frequency spatial and temporal noise in the output,
and (2) recovering fine detail that the depth camera
alone cannot resolve. The choice of photometric stereo
is motivated by its error characteristics, which are to
provide accurate high frequency data while tending to
introduce error in the global shape. Combining the
accurate high frequency information from photomet-
ric stereo with the accurate low frequency information
from the depth camera yields a high quality final re-
sult. In order to produce geometry from every frame
multispectral photometric stereo is used. This allows
three lighting directions to be captured in a single im-
age by using three different colored lights to illuminate
the scene from separate directions. This makes the pro-
posed technique particularly suited to dynamic scenes.

2 Related work

Prior work has examined using multiview stereo to
enhance the output from depth cameras, [5, 8, 17], but
while improvements were demonstrated this approach
is ultimately limited by the fact that both depth cam-
eras and stereo methods exhibit high frequency noise.
In [7] the heuristic that depth discontinuities tend to
co-occur with color or brightness changes within an im-
age is used, allowing information from a high resolution
color image to be applied to a lower resolution depth
image. This enables edges to be recovered more ac-
curately and noise on smooth surfaces to be reduced.
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Registered high resolution images are also taken ad-
vantage of in [16] where an iterative bilateral filtering
approach is used.

Photometric stereo produces accurate normal maps
which are ideal for enhancing noisy range images. Ne-
hab et al. [12] presented a method for producing
a surface containing the high frequency information
of a normal map and the low frequency information
from a depth map. Photometric stereo has been used
to produce reconstructions containing very fine detail
[11, 13].

Photometric stereo uses at least three different light-
ing conditions of the same scene to estimate a dense
normal map [14]. The necessary three lighting con-
ditions can either be achieved by multiplexing in the
time domain or the frequency domain. Multiplexing in
the frequency domain, by using three different colored
light sources, means that three lighting directions can
be observed in a single image, allowing reconstruction
at frame rate. This idea was first proposed over 15
years ago [2, 15] and recently has been demonstrated
to give good performance on dynamic scenes [6, 9].
The disadvantage of multispectral photometric stereo
over time multiplexed photometric stereo is that it as-
sumes scenes are of constant chromaticity, although
this assumption can be relaxed to piecewise constant
chromaticity as shown later.

3 Theory

The proposed system carries out reconstruction at
each frame in three steps. Firstly a dense normal map
is constructed using multispectral photometric stereo.
Secondly this normal map is aligned with the depth
camera’s output and finally the two sources of data
are combined to give a 3D model.

Section 3.1 outlines the photometric calibration
technique used and gives a brief description of the ex-
tension to scenes which contain multiple chromatici-
ties. The key to this extension is using the low fre-
quency geometry from the depth sensor along with a
color image to segment the scene into regions of con-
stant chromaticity. The subsequent sections detail the
reconstruction process.

3.1 Multispectral photometric calibration

We assume a Lambertian reflectance model and
no ambient lighting. Given three distant point light
sources illuminating a surface with unit normal n and
albedo «, it has been shown, [2], that the observed
intensity of the surface is given by

c=aVLn=a[ve vi v2][lo 1 L2 ]Tn, (1)
where c, 1; and v; are all 3-vectors. ¢ denotes the RGB
image intensity, 1; defines the direction of light 4, and
v; is the combined response of surface and sensor to



light 4. The matrix V models the combination of the
surface’s chromaticity, the lights’ spectral distributions
and the camera sensors’ spectral sensitivities and so
varies for regions of different chromaticity. Given a
new input image, a normal map can be reconstructed

using
(2)

To calibrate the photometric setup, the matrix M =
VL must be found. We use the technique of [6] in
which (c,n) pairs are used to robustly estimate M
through a RANSAC-based algorithm. Three (c,n)
pairs are sufficient to estimate M up to a scale fac-
tor by solving the linear system ¢ = aMn, as long as
«a and M are the same for each pair. This means that
each pair must come from a point with both the same
albedo and the same chromaticity, however these sur-
face properties are not known a priori. Three points
are chosen at random and used to hypothesize M.,
then support is measured from all other pairs by test-
ing for each pair whether

nx (VL) e

lc—Men| < 7,

(3)

where 7 is a threshold value. If the three points have
the same albedo and chromaticity then M, will be a
good estimate and correctly predict the image color
from the normal map. More sets of three pairs are
chosen at random, and the M, with the greatest sup-
port kept, until the RANSAC stopping criteria are met.
Subsequently an estimate of M, is made using a least
squares approach from all pairs which supported the
last accepted M.

In [6] a structure-from-motion approach is used to
estimate coarse geometry to provide estimates of n
throughout a calibration sequence. Taking advantage
of the depth camera this coarse geometry is already
available. The calibration technique can be applied to
a single frame or to a sequence, but it must be guaran-
teed that a wide range of normal directions are present
to make the estimation of M well posed.

To extend this calibration procedure to scenes con-
taining multiple chromaticities we estimate more than
one M matrix. After the first M has been esti-
mated, corresponding to the dominant chromaticity in
the scene, we remove from consideration all points for
which

<l

’ c M| Mn (4)
indicating that this point is well modeled by M. This
condition differs from (3) in that the albedo of the sur-
face no longer plays a role, only the chromaticity. All
points with the same chromaticity are removed inde-
pendent of their albedo. To find a calibration matrix
for the second most dominant chromaticity in the scene
the same calibration procedure is carried out for the
remaining points.

< T,

3.2 Multispectral photometric reconstruction
During reconstruction of multichromatic scenes the
input image must be segmented to decide which M
matrix to use to estimate n at each pixel. The seg-
mentation is set up in a Markov Random Field (MRF)
framework with unary and pairwise terms described
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below. There is one node for each non-shadowed
pixel in the input image and edges are added between
nodes corresponding to neighboring pixels within a 4-
neighborhood.

The depth image from the depth camera is smoothed
and a normal ng calculated from it at each pixel. The
input image is smoothed by the same amount to give a
smoothed image value c, at each pixel and the unary
term for using matrix M, is given by

2

|CS| M1n9

a |Min8|

cs (5)
This encourages calibration matrices to be chosen
which produce a normal map with similar low fre-
quency characteristics to the recovered depth image.
We use the Potts model for the pairwise terms [4] in
which no cost is assigned to neighboring pixels sharing
a label and a cost vy is assigned if they have different
labels. The cost v is modulated by an edge map of the
input image. For pixels on an edge 7y is small while for
pixels not on an edge +y is large. The maximum a pos-
teriori (MAP) solution to the MRF is estimated using
the tree reweighted message passing algorithm [10] and
reconstruction is based upon the labels assigned.

3.3 Registration of photometric and depth data

Depending upon the type of depth camera used
the depth image and color image may be inherently
aligned, however if this is not the case then registration
between the two must be carried out. Stereo calibra-
tion is a well studied topic and we wish to make use
of the available tools to calibrate between color images
and depth images. One popular approach for standard
stereo calibration is to image a chessboard pattern at
several orientations allowing for a homography to be
estimated followed by a full optimization of both intrin-
sic and extrinsic camera parameters. To extend this to
include depth images a chessboard pattern that shows
up in both color and depth images is required. This
can be achieved, for example, by cutting out the black
squares on every other row in a chessboard pattern and
ensuring that there is a dark background behind the
board during capture. The depth images produced by
this method do not always have clean corners at the
edges of the cut out squares which results in corner lo-
calization approaches failing. More robust results are
obtained by fitting lines to the pattern and then us-
ing the intersection of these lines to estimate corner
locations.

3.4 Combining photometric and depth data

Given a depth image a 3D mesh is created. Using
the calibration information obtained in the previous
section this mesh is transformed into the color camera’s
coordinate system and ray tracing is used to produce a
depth image from the point of view of the color camera.

Once values from the depth image have been pro-
jected onto the color image, the method of [12] is used
to combine the two types of information. First the low
frequency bias in the normal field is removed using the
depth map. Geometry is then estimated by optimizing
an energy function which forces the surface to fit both
the observed depths and the observed normals (see [12]
for details).
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Figure 1. Temporal noise as a function of spatial
smoothing of the depth images. Shaded areas
equal to half standard deviation of results. The
use of photometric data allows for a reduction in
temporal noise without the need for smoothing.

4 Experimental setup

The Kinect sensor used in these experiments has a
resolution of 640 x 480, both in the depth as well as
the color domain. In addition three light sources of
different colors were arranged in a triangular configu-
ration around the sensor. A Grasshopper camera with
a resolution of 1600 x 1200 was used as a secondary
high resolution camera (Section 5.4). Depth and color
images were captured from the Kinect at an average
rate of 30 fps. Average processing time was 6 seconds
per frame using single threaded C++. The majority
of this processing time is taken by the integration from
normal map to 3D surface. There exist Fourier Trans-
form methods for this computation [3], which can run
in real time, however they require a regular grid of
samples and so may introduce deformations when re-
constructing scenes such as faces.

5 Experiments

5.1 Reduction of temporal flicker

To measure temporal flicker thirty reconstructions
of a static scene were carried out and the standard de-
viation of the estimated depth value at each pixel that
was successfully reconstructed in all thirty frames was
calculated. This was carried out on three scenes and
the average results computed. Figure 1 shows the tem-
poral noise values as a function of spatial smoothing in-
troduced by blurring each depth image independently
with a Gaussian kernel. When there is little spatial
smoothing the additional photometric information sig-
nificantly reduces the magnitude of the temporal noise.
While sufficient smoothing does reduce flicker, it also
removes fine details, while the addition of photometric
data reduces noise as well as enhancing detail. Note
that no temporal smoothing is used.

5.2 Reconstruction of a plane
The previous experiment only investigates variations

in reconstruction over time and does not give any in-
formation about the absolute accuracy of the system.
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Figure 2. Slice though a reconstructed plane.
Photometric stereo can smooth the high fre-
quency noise but does not remove the low fre-
quency deformation. Note different axis scales.

To investigate this a known planar surface was recon-
structed and a plane was fitted to the resulting point
cloud using least squares estimation. The average de-
viation of each reconstructed point from this plane was
measured and used as a metric for reconstruction ac-
curacy. Using only the depth information, the average
absolute error to the best fit plane was 1.6 mm. By in-
cluding photometric information this error was reduced
to 1.2 mm. From figure 2 it can be seen that the pho-
tometric information reduces high frequency noise, but
cannot correct the overall low frequency deformation
present in the depth image.

5.3 Reconstruction of dynamic scenes

To demonstrate the qualitative improvement that in-
corporating photometric stereo brings to reconstruc-
tions of dynamic scenes several face sequences were
captured. Figure 3 shows an example reconstruction
and it can be seen that the addition of photometric
stereo both reduces noise and resolves finer details than
are visible in the initial reconstruction. Two calibra-
tion matrices were found, one that modeled the shirt
and one that modeled the skin.

5.4 Addition of a second camera

Figure 4 shows the quality of reconstruction achieved
when a high resolution camera is used to augment the
depth camera. The depth camera information is still
important as the photometric reconstruction on its own
results in low frequency deformations, as seen in figure
4(d). Currently the high resolution camera is not syn-
chronized with the Kinect camera, so reconstruction
can only be performed on individual images, which are
temporally aligned.

6 Conclusions

We have demonstrated the effectiveness of photo-
metric stereo for both reducing the noise present in
depth camera outputs and allowing for the resolution
of fine detail. The modest additional equipment re-
quirements for this approach are three different colored
lights. The further addition of a high resolution camera
allows for more detail to be recovered. We have also
demonstrated that the assumption of constant chro-
maticity imposed by multispectral photometric stereo
can be relaxed by taking advantage of a depth camera.



;k /5‘

(a) (b c
Figure 3. Reconstruction of a dynamic sequence using (a) the depth camera only and (%3 the depth camera
combined with photometric stereo applied to the image from the inbuilt Kinect color camera (c).
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Figure 4. (357}))) Reconstructions usigl)g depth data
only, from (a) the original viewpoint and (b) a
novel viewpoint. (c,d) Reconstructions from the
same viewpoints using photometric data only,
note the low frequency deformation. (e,f) Final
result from the same viewpoints, showing high
frequency detail and correct overall shape.
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