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Abstract

In this short paper, we1 try to present a summary of some
of our activities relevant to computer assisted interventions
and computer vision. References to published work in ma-
jor journals and conferences allow the reader to get access
to more detailed information on each subject. It was not
possible to cover all aspects of our research within this pa-
per, but we hope to provide an overview on some of these
within this short paper. The readers are also invited to visit
our web-site at (http://campar.in.tum.de) to get more infor-
mation on aspects of our work, which are not presented
here.

1 Introduction

Since the discovery of X-ray imaging at the end of 19th
century medical images have played crucial role in patient
diagnosis and treatment. Last decades of twentieth cen-tury
gave birth to a large number technologies and devices for
physiological sensing and imaging. However in the absence
of well-established scientific models of diagnosis and treat-
ment, and in an environmentwhere no concept and solution
integrating patient specific models and process modeling
was available, the sensing and imaging modalities where
developed as general tools. This of course translates into
sensing and imaging systems, which are not optimized and
cause unnecessary side effects. For example, the medical
imaging devices often provide images of the anatomy with-
out giving the option to their users to specify a particular
diagnostic or treatment objective. Even if the physician is
interested only in particular qualitative or quantitative in-
formation in regard to a particular anatomy or progress of
a particular disease, the imaging and sensing modalities are
often only providing general anatomical or functional infor-
mation.
Our objective is to create strong partnerships between

clinicians, scientists and industry to define the path towards
revolutionizing the design and development of physiolog-
ical sensing and imaging devices in order for them to be
based on and to contribute to the patient’s physiological
models as well as complex modelling of diagnostic and
therapeutic procedures. We also focus on design of novel
sensory and imaging technologies, which consider the ac-
quisition and modelling of information across scales and
close the loop between diagnosis and therapy. The auto-
matic generation of customized detailed view of the sensory
and imaging information as well as diagnosis and therapeu-
tic procedure to physicians as well as patients is also within
our focus.

1The author would like to thank Stefanie Demirci, Stefan Hinter-
stoisser, Diana Mateus, Tobias Blum, Lejing Wang, Tobias Lasser, Darko
Zikic, Ben Glocker, Christian Wachinger, and Alexander Ladikos for their
valuable input to different sections of this overview paper.

Figure 1. Medical Augmented Reality in Abdominal
(left) and Brain (right) Applications

In this short overview paper we present a summary of
some of our activities in the medical field as well as some
of our research in computer vision. We believe in a strong
synergy between computer vision and computer assisted in-
teventions. By focusing our active research in both fields,
we are able to directly benefit from and transfer new results.

2 Surgical workflow recovery and analysis

Computers can aid the surgeon during a running surgery
in many ways. However, one crucial point for using e.g.
navigation systems, intra-operative imaging, augmented re-
ality visualization or other computer aided solutions is to
optimally integrate them into the workflow. When a novel
technology is not well integrated into the surgical workflow
and when using it complicates and lengthens the surgery
it will not be used. Therefore such technologies have to
be well integrated and have to provide the right informa-
tion at the right time. One important issue in order to do
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this is the recovery an modeling of surgical workflow. We
then need systems that can automatically recognize work-
flow steps. If we continuously detect the workflow step of
a running surgery, we will be able to provide the right in-
formation at the right moment with appropriate visualiza-
tion. We have developedmethods to automatically generate
temporal models of the workflow of a minimally-invasive
surgery based on the instruments that are used during the
surgery [2, 41]. We have shown that when using such a
model, we can detect the current phase of a running surgery
based on the instruments that are used. Another application
of such a model would be to predict the remaining time
of a running surgery in order to call the next patient auto-
matically. Furthermore such methods can be used to auto-
matically generate human-understandable statistical repre-
sentations of the workflow [11] for training or analysis of
surgical procedures. Such methods can also be used when
other information than instrument usage is available in the
operating room. For exmaple, we have shown that it is pos-
sible to model surgeries and detect the current phase based
on images from multiple external video cameras [42], ac-
celerometers that are attached to the arms of the surgeon
[1] and/or laparoscopic video [9].

3 Medical Augmented Reality

Medical augmented reality (AR) has been an active sub-
ject of research in the last two decades. In the beginning,
the focus was mainly on technical issues like tracking, cal-
ibration and display devices. These technologies matured
in the last years and recent research focuses more on top-
ics like usability for specific applications, user acceptance
and perceptual issues. We have presented different meth-
ods to improve usability of medical AR systems, especially
for systems using a head-mounted display (HMD). The vir-
tual mirror [6] is a new interaction paradigm that allows a
surgeon to take an additional viewpoint on critical struc-
tures. The user can freely move the virtual mirror inside
the patient to obtain a second view of important struc-
tures, while preserving the necessary alignment between
real and virtual. Regarding issues related to depth percep-
tion, when simply augmenting virtual information onto the
human body, the user does not have a proper depth percep-
tion as this visualization suggest that the virtual object is in
front of real objects. Contextual in-situ visualization [7, 5]
significantly improves the depth perception of surgeons by
superimposing augmented objects as if the user would see
them through a kind of window into the body. Furthermore
we have shown that missing out-of-focus blur reduces the
viewing comfort in AR system and have presented a first
system that can add artificial out-of-focus blur [12].
Based on this basic research we have been able to de-

velop AR systems that are more intuitive and less stressful
to use, providing additional information than traditional vi-
sualization methods. We have presented a HMD-based AR
system for trajectory planning in neurosurgery [47], a very
delicate task as no important structures must be injured.
AR can help by providing intuitive visualization during the
planning. Also for training we see a great potential of AR
and have developed an AR system to teach the use of ultra-
sound (US) [10]. Learning how to correctly use US is very
difficult as it is user dependent and US images are hard to
interpret. The AR system allows seeing the US slice in-situ
and provides a review environment for trainees where their
own performance can be compare visually with the perfor-
mance of an expert.

Figure 2. CamC imaging provides significant benefits
for orthopaedic and trauma surgery.

4 CAMC

The Camera Augmented Mobile C-arm (CamC) system
extends a standard mobile C-arm by a video camera and
mirror construction [38, 39]. Thanks to the mirror con-
struction and a one-time calibration of the CamC system,
the acquired fluoroscopy images are co-registered with the
video images without any further calibration or registration
during the intervention, providing a geometrically correct
overlay. The design and imaging concept of CamC are vi-
sualized in Fig. 3. This allows the CamC system to provide
a real-time intra-operative visualization of patient skin sur-
face together with underlying bone structures, i.e. an X-ray
and video image overlay. A workflow based method has
been applied to evaluate the clinical impact of the CamC
system by comparing its performance with a conventional
system, i.e. standard mobile C-arm [62]. Interlocking of
intramedullary nails on animal cadaver is chosen as a simu-
lated clinical model for the evaluation study. Experimental
results show that it takes significantly less radiation expo-
sure whereas operation time for the whole interlocking pro-
cedure and quality of the drilling result are similar, using
the CamC system compared to using the standard mobile
C-arm. The X-ray and video image overlay of the CamC
system enables many novel solutions for advanced C-arm
X-ray imaging and surgical navigation. The problem of po-
sitioning mobile C-arms repositioning during surgical pro-
cedures currently requires time, skill and additional radia-
tion. A visual servoing based method proposed by Navab
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(a) (b)

Figure 3. Design (a) and imaging concept (b) of CamC

et al. [40] uses a CamC system to speed up the procedure,
simplify its execution and reduce the necessary radiation for
C-arm positioning. The CamC system provides an accurate
positioning and guidance of instruments in 2D. However,
no depth control was possible. As an extension to the CamC
system, Traub et al. [48] presented a multi-view opto-xray
imaging system that is also capable of depth control during
trauma surgery and orthopedic procedures using only one
additional X-ray image and a second video camera that is
rigidly attached to the C-arm. Multiple C-arm X-ray im-
ages are acquired in order to help clinicians evaluate long
bone geometry. However, impromptu and accurate intra-
operative evaluation based on separated individual images
remains challenging. It would be desirable to present clin-
icians with an X-ray panorama by stitching the individual
X-ray images. Wang et al. developed a method [59, 60, 61]
to create parallax-free panoramic X-ray images without the
requirement of overlapping X-ray regions using the CamC
system.

5 freehandSPECT

Patient tailored surgery and quality assurance is prompt-
ing the development of intra-operative imaging systems.
In the particular case of radio-guided surgery, 3D nuclear
imaging systems could enable navigated image-guided re-
section of radioactively labelled lymph nodes, tumors and
metastases. This would allow the precise transfer of the
unique information of nuclear imaging into surgery. Free-
hand SPECT is a novel imaging modality that enables 3D
nuclear imaging in the operating room [64]. In Freehand
SPECT, hand-held 1D gamma detectors are tracked with
spatial positioning systems in order to reconstruct localized
3D SPECT images using series expansion methods adapted
to ad-hoc random detector geometries and sparse, limited-
angle and irregularly sampled data.
A first prototype of Freehand SPECT was introduced in

2007 [63]. Development since then has focused on guid-
ing the freehand acquisitions to ensure reproducibility [35],
on the reconstruction method to improve accuracy and sen-
sitivity [36, 65] as well as on hardware developments to
enable the translation of the technology into actual clini-
cal practice [64]. Current research is focusing on substitut-
ing the 1D gamma detectors with hand-held, miniaturized
2D gamma cameras, as well as investigating the potential
of high-energy gamma probes to visualize common high-
energy tracers like F18-FDG intra-operatively in 3D.

Figure 5. Visualization of the 2D/3D scenario: Our
approach estimates the 3D deformation based on the
2D projection image.

6 Deformable Medical Image Registration

Deformable registration seeks to estimate the transfor-
mation which relates the corresponding structures in two
given images. This is one of the most important pre-
processing steps for a large number of medical applications.
Examples range from the fusion of information from differ-
ent modalities for diagnosis and treatment, to construction
of anatomical atlases in the field of computational anatomy.
Especially the multi-modal registration problem is still an
active and challenging research topic due to the complex
structure of the associated optimization problem.
An important aspect in image registration algorithms

is the optimization of the objective function. Accurate,
reliable, and robust registration demands powerful opti-
mization strategies due to the inherent challenging prob-
lem of automatically finding correspondences between im-
ages. We have exploited discrete labeling of Markov ran-
dom fields (MRF) as a novel optimization paradigm for
solving registration. Discrete MRFs have been widely used
in computer vision for image denoising or segmentation.
The big challenge, however, in using MRFs for the task
of registration is the gap between the discrete nature of la-
beling problems and the continuous transformation param-
eters to be estimated in registration. Our general frame-
work bridges this gap and allows to represent both linear
[16, 69] and non-linear [15] registration as graph labeling
problems based on iterative label space refinement strate-
gies. Our dervied algorithms are computationally efficient,
avoid local minima through large neighborhood search, and
yield high-accurate and robust registration results. We have

208



Figure 4. Human Motion Analysis via Manuifold Learning

applied our methods to various applications such as multi-
modal registration [14, 68], atlas-based segmentation via
registration [17], or deformable stitching for whole-body
MRI [49].
Besides the derivative-free MRF-based methods, we

have also proposed a number of modifications to differ-
ential methods which considerably improve the efficiency
compared to the standard approaches. In the initial work
on this subject, we observed and analyzed the behavior that
some derivative-based methods do not perform evenly in
the whole image domain [73], and achieve a much faster
convergence locally in image parts with strong intensity
gradients (local gradient bias). In further work, we pro-
posed a number of optimization schemes, which reduce this
unwanted effect for arbitrary similarity measures. In [71],
we propose an optimization based on the concept of natural
gradients, inspired by approaches from the machine learn-
ing community. In [67], we propose a scheme based on a
heuristically derived preconditioning term, and a generaliz-
ing framework unifying a large number of different registra-
tion methods. By providing a connection to precondition-
ing in [67], we demonstrate that the negative local gradient
bias is related to the condition of the registration problem.
In consequence, optimization methods which employ a pre-
conditioning, such as Newton-type methods will suffer less
from the local gradient bias. This provides further insight
into the performance of existing registration methods, such
as the classical method of Horn and Schunck [72].
The registration of 3D vasculature to 2D projections is

the key for providing advanced systems for image-based
navigation and guidance. Building upon our original work

on 2D-3D registration of vascular structures in [18, 19],
which perform a linear registration, we developed the first
system capable of deformable 2D-3D registration of vascu-
lar structures [70, 20]. Due to the addition of regulariza-
tion terms in 3D, our approach was capable of approximat-
ing the correct 3D transformation even in the challenging
single-view scenario (see Fig. 5). We further improved the
original deformable approach in by eliminating the need for
manual interaction during the medical treatment and im-
proving the performance [21]. This is achieved by a novel
data term, which avoids does not require a segmentation of
the 2D vasculature.

7 Ultrasound Mosaicing & Motion Modeling

Ultrasound mosaicing adresses the combination of mul-
tiple ultrasound frames. The usage of ultrasound mosaicing
provides the sonographers not just with a compounded vol-
ume of higher quality; recent studies also state a couple of
other clinical advantages that come along with the extended
FOV. First, the spatial relationship among structures that are
too large for a single volume is easier to understand. Sec-
ond, sonographers have the flexibility to visualize anatom-
ical structures from a variety of different angles. Third,
size and distance measurements of large organs are possi-
ble. Fourth, individual structures within a broader context
can be identified by having an image of the whole exam-
ination area. And last, because of the increased features
in the compounded view, specialists that are used to other
modalities than ultrasound can better understand the spatial
relationships of anatomical structures; helping to bridge the
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gap between the modalities and making it easier to convey
sonographic findings to other experts.
We propose to apply simultaneous registration tech-

niques to find the correct alignment of the images [56,
57]. We derive a novel extension for multivariate sim-
ilarity measures and deduce efficient optimization tech-
niques [53]. Moreover, we devise ultrasound specific sim-
ilarity measures that deal with the particularities of ultra-
sound: viewing-angle dependency and contamination with
speckle noise [52]. In a recent study, we show that speckle
statistics are better conserved by applying the 2D analytic
signal [50]. Finally, we developed a new approach towards
the fusion of the intensity information by estimating the
acoustic impedance [55].
Next to mosaicing, we are equally interested in motion

modeling from ultrasound. Imaging organs in thorax and
abdomen is affected by respiratory motion. For consecu-
tive processing steps, it is often necessary to assign to each
image its corresponding breathing phase. In our work, we
developed a purely image-based gating system based on
manifold learning for the creation of 4D ultrasound [58].
This no longer necessitates the application of external gat-
ing systems, which have long setup times, prolong the over-
all acquisition, are costly, and consequently, rarely used in
practice. Moreover, we designed a new approach for the
registration of time-resolved images by applying a group-
wise registration method [66].

8 Manifold Learning

Computer-aided diagnosis and procedures often imply
processing large and high dimensional datasets. Visualiza-
tion and analysis of such data can be very time demand-
ing for physicians but also very computationally expensive.
Fortunately, in many cases the relevant information for an
application can be represented in lower dimensional spaces.
This is possible using dimensionality reduction methods to
decrease the processing time and facilitate any posterior
analysis. Up to recent years, dimensionality reduction has
relied mainly on linear methods, such as Principal Compo-
nent Analysis (PCA). Linear methods are however not suit-
able for handling non-linear complex relationships among
the data samples. Non-linear approaches based on manifold
learning are a good alternative for dimensionality reduction
in such cases [37]. They are simple, flexible, account and
have a closed form solution. Furthermore, medical datasets
often verify the manifold assumption, i.e. the assumption
that the data lies close to a manifold. For instance, the con-
tiguous frames of a video or the slices of a volume vary
smoothly; also, the continuous deformation of an organ’s
shape over time can be considered to form a manifold; and,
the variations of an organ over a population can also be ex-
pected to lie on a manifold. These facts have recently raised
interest in using manifold learning methods for a variety of
applications.
We have studied the use of manifold learning for dif-

ferent applications in Computer-aided diagnosis and pro-
cedures. Clustering and classification after reducing the
dimensionality with manifold learning is usually simpler
and more efficient. In [4], images of an endoscopic video
were visualized and analyzed in such a dimensionality-
reduced space. The obtained representation is suitable for
faster navigation in the video, and also for clustering simi-
lar scenes or similar imaging conditions. We have also em-
ployed manifold learning for classification of biomedical
data [51, 43].

Figure 6. Camera setup of the reconstruction system
in our lab [31] and in an interventional room [33]

Manifold learning is also useful for reconstruction of de-
forming organs from ungated images. In [51], we proposed
an image-based gating using LE. The low dimensional rep-
resentation allowed for the identification of similar images,
which were then used for reconstructing 4D ultrasound data
from abdominal images affected by breathing motion.
In [54], we apply manifold learning to the multi-modal

registration problem. This work relies on the principle
that two images of the same organ acquired with differ-
ent modalities have almost identical intrinsic (self) sim-
ilarities. Structural representations capturing these self-
similarites are computed using LE independently on each
image. The resultant representations are then registered
with mono-modal methods.
Finally, we have considered the analysis of human mo-

tion [45, 46] applied to diagnosis of neurological diseases.
The method relies on manifold learning to create a series
of low dimensionality representations of activities of inter-
est frommotion capture data. Patients can then be equipped
with a reduced number of portable sensors that enable long-
term analysis. During the test stage, the learned motion
models are used to detect the current activity and give an
estimate of the pose. The use of other sensors is also possi-
ble [44].

9 4D Reconstruction

Real-time 3D-reconstruction has sparked the interest
of computer vision researchers for at least the last two
decades. However, using a real-time 3D reconstruction sys-
tem for interventional applications has up to now been a
little considered subject. At CAMP we developed a recon-
struction system targeted at interventional environments to
show that bringing such a system into a clinical environ-
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Figure 7. Collision avoidance with medical devices.
The red bounding box indicates a danger of collision.
[33]

ment opens the door to many new and innovative applica-
tions.

Our system is based on a total of 16 synchronized
ceiling-mounted cameras observing the scene (see Fig. 6).
Using the images acquired by the cameras we perform a
3D-reconstruction. We designed the system with two goals
in mind: real-time performance and ease of use in inter-
ventional environments. To achieve real-time performance
we distributed the computations over multiple PCs making
use of modern multi-core architectures and GPU process-
ing [31]. For making the system usable in an interventional
setting we adopted an efficient and easy-to-use calibration
procedure and a robust background subtraction algorithm
which provides the input to the reconstruction algorithm.
The reconstruction is performed by either fully computing
the visual hull of the scene on the GPU in real-time [31] or
by updating the visual hull over time [8].

Based on our system we implemented three interven-
tional applications. In a first application we used the sys-
tem to automatically detect collisions between automated
medical devices such as C-arms and other objects inside
the interventional room [33] (see Fig. 7). In a second appli-
cation we used the 3D-reconstruction of the scene to model
a physician’s radiation exposure. To this end we track the
physician’s reconstruction and accumulate the radiation he
receives from the X-ray source over time [34]. The result
is a color-coded map superimposed on the physician’s re-
construction showing the areas of high radiation exposure.
Finally, we also used the system to learn and recover the
work flow of a surgical procedure [42].

The promising experimental results obtained with these
applications show the possible impact of our work for
the medical community and illustrate the clinical value of
multi-camera systems in the development of intelligent, in-
tegrated interventional suites.

In addition to the work directly related to interventional
applications we also developed a method for creating high-
quality reconstructions from image-collections using an it-
erative graph-cut approach [32].

10 Real-Time Detection of Low-Textured
and Texture-less Objects

Real-Time detection of known object instances is a key
components in various areas of computer vision, e.g. in
industrial inspection, augmented reality and robotics. For
many applications it has to work robustly and in real-time
in order to be fully operational. While real-time detection
of well textured objects has already reached a high level of
maturity - mainly by using fast keypoint approaches [23] -
its application on low-textured or texture-less objects is still
an open issue.
The main reasons for that are the lack of robustness to

strong background clutter, which lead to a severe degrada-
tion of performance or even failure, and the inefficiency
during runtime. However, low-textured and texture-less
objects play an important role in man made environments
which makes it necessary and unavoidable to deal with
them in an efficient manner.
We tackle the problem from several directions: for low-

textured objects we developed methods based on fast per-
spective patch rectification [26, 3, 22, 24, 25]. An initial
classifier is used to quickly compute a coarse pose estimate
which is then refined using a fast template matching algo-
rithm [30]. Computing the similarity between the current
image and the reference patch helps to reject outliers and to
validate the result. If the reference image is fronto-parallel
to the object and the internal parameters are known, one sin-
gle patch is often enough to precisely estimate the pose. As
a result, we can efficiently deal with objects that are signif-
icantly less textured than the ones required by state-of-the-
art approaches. For detecting texture-less objects, we pro-
pose three different approaches: using closed contours on
the edge map [28], using fast gradient [27] and normal [29]
based template matching methods or using oriented point
pair features on the depth map [13]. For the first approach,
we propose a robust way to find closed contours in an edge
image and to quickly match them to a large database. This
method is is invariant to scale changes and robust against
planar perspective distortions. Thus, it well suits the detec-
tion of texture-less objects as long as closed contours on the
object are available.
A more generic approach [27] presents a novel template

representation that is designed to be robust to small im-
age transformations. This robustness based on the domi-
nant gradient orientations lets us test only a small subset
of all possible pixel locations when parsing the image, and
to represent a 3D object with a limited set of templates.
Coupled with a binary representation that makes evaluation
very fast and a branch-and-bound approach to efficiently
scan the image we are able to detect texture-less 3D objects
in real-time.
If only the depth map is available, we propose to use a

novel method that creates a global model description based
on oriented point pair features and matches that model lo-
cally using a fast voting scheme [13]. The global model
description consists of all model point pair features and
represents a mapping from the point pair feature space to
the model, where similar features on the model are grouped
together. Such representation allows using much sparser
object and scene point clouds, resulting in very fast per-
formance. Recognition is done locally using an efficient
voting scheme on a reduced two-dimensional search space.
Although the recognition process is slower than the ones of
[27, 29], it is more robust with respect to partial occlusion.
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Figure 8. Real-Time Object Detection and Tracking
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