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Abstract

This paper presents a short-baseline real-time stereo
vision system that is capable of the simultaneous and
robust estimation of the ego-motion and of the 3D
structure and the independent motion of thousands of
points of the environment. Kalman filters estimate the
position and velocity of world points in 3D Euclidean
space. The six degrees of freedom of the ego-motion
are obtained by minimizing the projection error of the
current and previous clouds of static points. Experi-
mental results with real data in indoor and outdoor en-
vironments demonstrate the robustness, accuracy and
efficiency of our approach. Since the baseline is as
short as 13cm, the device is head-mountable, and can
be used by a visually impaired person. Our proposed
system can be used to augment the perception of the
user in complex dynamic environments.

1 Introduction

In this paper we present a wearable mobile system
that provides information of 3D structure, independent
motion and ego-motion to augment the perception of
the user in complex environments. We have built a
prototype consisting of a helmet with stereo cameras
connected to a portable computer system (Figure 2).
As the user navigates in its environment, the system
detects and tracks image features and computes their
corresponding stereo disparities. The features and dis-
parities of consecutive frames are used to compute the
ego-motion of the camera using a robust least squares
algorithm. A Kalman filter then fuses the feature
tracking, the stereo disparity and the extracted ego-
motion to iteratively estimate the 3D position and 3D
velocity of each tracked feature in a user oriented coor-
dinate system. Figure 1 shows an example of the out-
put obtained in a crowded scene containing multiple
moving objects. Our proposed methods can be used
to augment the perception of the visually impaired in
complex dynamic environments. The system runs in
real time at 17 Hz using a standard laptop, and it was
tested online in countless occasions.

2 Related Literature

The simultaneous estimation of structure and mo-
tion from stereo images has been heavily covered by
the literature. We give here a brief review of the most
related methods. Jung and Lacroix [4] uses Kalman
filters to refine estimates of ego-motion and 3D land-
mark position of static world points. Agrawal et al.
[1] and Talukder and Matthies [13] estimate indepen-
dently moving objects by detecting and tracking blobs
in the image. The blobs are obtained from image re-
gions that are not in accordance with the computed

Figure 1. Output of our system while moving in a com-
plex environment. Tracked features are shown as a cir-
cle. The vectors show the direction and speed of the
features on moving objects.

ego-motion. Similarly, Ess et al. [2] present a frame-
work for the detection of independent motion with a
freely moving camera in crowded scenes. Franke et al.
[3] use Kalman filters to track independent motion us-
ing stereo cameras. The ego-motion of the cameras is
obtained from the intertial sensors of a vehicle. Rabe
et al. [9] extended this approach to dense motion fields
using FPGA and GPU implementations. Klein and
Murray [5] also track features using a monocular sys-
tem for the real time estimation of camera motion and
structure for augmented reality applications. Indepen-
dent motion is not modeled but treated as outlier. Vi-
sion has also been used to provide navigation support
to the visually impaired. A survey of navigation sys-
tems of the visually impaired can be found in [15]. Lu
and Manduchi [7] present a stereo system to detect
curbs and stairways. Sáez and Escolano [12] detect
aerial obstacles in near real time, but only static scenes
are considered. Treuillet et al. [14] propose a similar
application to localize and guide the walker along a
predefined path by using a monocular camera.

In contrast to the above methods, we track stereo
features and use Kalman filters to estimate their posi-
tion and velocity in Euclidean space while simultane-
ously estimating the ego-motion of the camera using
a robust method. Furthermore, our proposed system
runs in real time at 17 Hz using a single laptop.

3 Tracking 3D Points

This section presents a Kalman filter method
that iteratively estimate the position and velocity of
individually tracked feature points. The Kalman filter
we describe in this section is derived from Franke et
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al. [3], where it was used to detect moving object
in the automotive domain. We have expanded the
system model equations to allow a freely moving
camera instead of a motion on the plane, as originally
proposed.
System Model. Let pk−1 = (X, Y, Z)T represent
the coordinate vector of a world point observed by the
system at time k− 1 and vk−1 = (Ẋ, Ẏ , Ż)T represent
its associated velocity vector. The camera platform
moves in its environment with a given translational
and angular velocity, changing its relative position to
the point. After a time Δtk the new position of the
point from the camera point of view is given by

pk = Rkpk−1 + tk + ΔtkRkvk−1

where Rk and tk are the rotation matrix and trans-
lation vector of the static scene with respect to the
camera. The velocity vector vk changes its direction
according to:

vk = Rkvk−1

Combining position and velocity in the state vector

xk = (X, Y, Z, Ẋ, Ẏ , Ż)T (1)

leads to the discrete linear system model equation:

xk = Akxk−1 + Bk + ρk

with the state transition matrix

Ak =
[

Rk ΔtkRk

03×3 Rk

]
(2)

and input vector

Bk = (tT
k , 0, 0, 0)T (3)

The term ρk is assumed to be Gaussian white noise.
Measurement Model. A measurement is defined by
the vector m = (u, v, d)T , where (u, v) corresponds to
the image position of the feature point and d is its dis-
parity. The (u, v) components are obtained from the
feature tracking algorithm, while the disparity d is ob-
tained from the stereo algorithm. The non-linear mea-
surement equation h for the state vector of Equation
1 is

h(xk) =

[
u
v
d

]
=

f

Z

[
X
Y
B

]
+ ν

where f is the focal length of the camera and B is the
baseline of the stereo system. The term ν is assumed
to be Gaussian white noise. Since the measurement
equation is non-linear, the the extended Kalman Filter
is used.

4 Visual Odometry Estimation

The computation of ego-motion is one of the most
fundamental tasks for most mobile vision problems.
The accurate knowledge of the motion of the camera
allows to integrate estimates in a global coordinate
system. It also provides a solid constraint to detect
independent motion. Equations 2 and 3 require Rk

and tk (the rotation and translation of the static

scene, i.e. the inverse motion of the camera). This
section presents a method for their robust estimation.
Least Squares Formulation. Given a set of tracked
feature points mi = (ui, vi, di)T for i = 1, 2, · · · , n in
the current frame, and the set of corresponding fea-
ture points m′

i = (u′i, v
′
i, d

′
i)

T in the previous frame,
we seek to estimate the rotation matrix R and trans-
lation vector t, such that for all points in the sets,
g(m′

i) = R g(mi) + t, with g() = h−1(), i.e., the tri-
angulation equation. One way of obtaining the trans-
lation and rotation is to calculate the absolute orien-
tation between both set of points. Many solutions to
the absolute orientation problem exist when the error
in the 3D points is isotropic [6]. However, stereo trian-
gulation error can be highly anisotropic and correlated
[11]. Instead of minimizing the residuals in Euclidean
space, we minimize them in the image space, where the
noise level is similar for all components of the measure-
ment vector:

E = arg min
{R,t}

∑n
i=1 w2

i (m′
i − h(R g(mi) + t))2∑n

i=1 w2
i

(4)

where wi is a weighting factor determining the
contribution of the measurement to the least square
solution. In order to minimize Equation 4, the rota-
tion matrix R is parameterized by the pseudo-vector
r = (wx, wy, wz)T . The matrix R is obtained by
rotating the identity matrix |r| radians around the
axis r/|r|;. Assuming t = (tx, ty, tz)T , the parameter
for minimization is then the six-dimensional vector
x = (wx, wy, wz, tx, ty, tz)T .
Newton Minimization. Because of the non-linearity
imposed by the rotation and the projection equation
h(), we use an iterative Newton optimization method
to solve Equation 4, for which we require the compu-
tation of first and second order derivatives of the loss
function, i.e.:

J [i] =
∂E

∂x[i]
and H[i,j] =

∂2E

∂x[i]x[j]

Given an initial estimate x0, the Newton method iter-
atively converge to a local minimum by

xk+1 = xk −H−1
k J k. (5)

Equation 5 is iteratively applied until the residual Ek

of Equation 4 is small enough, or no significant change
in the estimate is observed. The closer the initial
value is to the real solution, the less iterations are
required to find a minimum. For small camera motion,
it is usually enough to set x0 to the zero vector. For
a large motion between frames, an inertial sensor
unit can provide the initial estimate of the motion
of the camera. For the experiments shown in Sec-
tion 5, the method converges in less than six iterations.
Iterative Robust Estimation. The sets of feature
correspondences often contain outliers due to false cor-
respondences or moving objects. In order to cope with
the outliers, an optimization approach is applied that
iteratively rejects them. Assuming that the outliers are
bounded (constraint imposed by the stereo and track-
ing algorithm), the motion estimated by the Newton
method will be approximately correct, and therefore,
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Figure 2. Wearable mobile stereo head

the outliers will have a larger residual than the inliers.
This provides a simple method for outliers rejection: if
the residual for a given feature is larger than a thresh-
old, the feature is eliminated from the set, and the
whole estimation process is repeated until convergence
(Algorithm 1). A nice property of the above procedure
is that the Newton method converges faster after each
robust estimation cycle, since the resulting estimate
is closer to the solution. After the initial estimate,
the Newton method usually requires only two cycles
to converge.

Input: Sets {mi} and {m′
i} and vector x0

Output: Rotation R and translation t
Initialize k = 0, wi = 1 for i = 1, 2, · · · , n;
# Start robust estimation cycle
while not converged do

# Start newton minimization cycle
while not converged do

Calculate J k, Hk and Ek at xk;
Update: xk+1 = xk −H−1

k J k;
Increase k;

end
Update r2

max = 32Ek;
# Outlier rejection cycle
foreach pair mi, m

′
i do

Calculate r2 = (m′
i − h(R g(mi) + t))2;

if r2 > r2
max then

Set wi = 0; # outlier
else

Set wi = 1; # inlier
end

end
end

Algorithm 1: Robust ego-motion estimation algo-
rithm.

The final value Ek after each Newton cycle in Al-
gorithm 1 is a measure of the average variability of
the residuals. We define inliers as those measurements
for which their squared residual is smaller than 32Ek.
Assuming that the residuals are normally distributed,
that threshold ensures that 99.7% of the features be-
long to the same distribution.

5 Experimental Results

We have implemented the proposed method in
C++ using OpenMP technology to benefit from
multi-core processing. Our algorithm runs in real time
on a standard laptop PC, and we have extensively
tested the algorithms on-line in innumerable scenes

and situations. We use the KLT algorithm [10] for
tracking features. In our configuration, KLT provides
up to 1024 tracks with a relatively low computational
cost. The stereo disparity of a feature is computed by
correlating a window of size 15×15 px centered on the
feature position. We use a pyramidal implementation
for both, tracking and stereo computation. The
baseline of the stereo system is 12.8 cm with a focal
length of 654 px and image size of 640× 480 px.

”Bridge“ Data Set. More than 2000 images were
acquired as the user was walking through the side-
walk of a bridge, whose length is approximately 60
meters. Figure 3 shows some excerpts of the sequence.
The sequence is challenging because it contains not
only repetitive structures, lack of texture, and semi-
transparencies produced by the railing at the left, but
also multiple pedestrians and vehicles moving in both
directions. In particular, the middle of the sequence
presents a difficult situation for the estimation of the
camera’s ego-motion. The images are occupied with
up to a 30% of moving objects (see Figure 1 and the
second and third row of Figure 3). The robust least
squares algorithm presented in Section 4 was still able
to provide a correct ego-motion estimate in those sit-
uations.

Observe that, since we build a local map of the
enrivonment, the visual odometry error will grow
superlinearly over time [8]. Nevertheless, our robust
algorithm is accurate enough to allow the generation
of accurate 3D reconstructions of large environments
with small drift. In order to demonstrate this, we have
performed a reconstruction of the scene by accumulat-
ing all observed static 3D points − excluding moving
points such as those on pedestrians − into the same
reference frame. Figure 4 shows the reconstruction
result. It can be seen that the ego-motion algorithm
was not only robust throughout the sequence, but
also precise enough to produce a coherent spatial
perception of the real overall structure.

”Footbridge“ Data Set. A sequence containing
750 images was acquired inside a building. Figure 5a
shows a picture of the tested environment. The user
started approximately at the camera position of Figure
5a and then turned left to walk on the footbridge.
Figures 5b and 5c show the structure obtained by
the accumulation of all observed static points of the
sequence. As it can be seen from the bird’s view
of Figure 5b, the estimation was accurate enough
to provide an almost perfect planar reconstruction
of the lateral footbridge wall. A careful inspec-
tion of the ego-path shown in Figure 5c reveals the
typical sinusoidal undulation performed when walking.

Computation Times. The following table shows the
mesaured average computation times for the ”Bridge“
data set in milliseconds.

Rectification Stereo Ego-Motion KLT KF Total

3.66 4.19 29.83 19.81 0.68 58.17

A laptop with an Intel Core 2 Duo 2.66GHz CPU was
used. The images were down sampled by a factor of
2. The current implementation of the algorithm can
process online video at 17 Hz.
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Figure 3. Excerpts of the outdoor sequence. The circles show the tracked features. The color encodes the
depth of the corresponding 3D point, where red is close (less than 1 m), yellow is at a middle distance
(between 1 and 3 m) and green is far (more than 3 m). The vectors show the Kalman filtered predicted
position of the 3D point in 0.5 seconds, back projected to the image.

Figure 4. Bird’s eye views of the sidewalk’s 3D reconstruction. The labels show the approximate positions
of the images shown in Figure 3. The color encodes the time at which the 3D points were first observed.

6 Future Work

The information obtained from our system can be
used to augment the perception of the visually im-
paired in complex dynamic situations. In particular,
the estimation of static objects will allow the user to
plan detours around obstacles and hazards, while pro-
viding reference points for orientation. The estimation
of the direction and intensity of the motion of pedes-
trians and vehicles is useful to avoid collisions and to
follow a person in a determined path. Our future works
includes the design of a suitable interface taking into
account the psychological and ergonomic factors of the
end user.
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(a) Indoor environment. (b) Bird’s Eye View

(c) Reconstruction observed from a similar viewpoint as in Fig. (a). The 3D points of the structure are shown with their original
luminance obtained from the images. The colored points shows the estimated position of the camera at each frame. The color
encodes the time of acquisition (from green to red).

Figure 5. Results on the indoor data set.
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