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Abstract

We propose an implementation of a model-based
free-viewpoint TV (FTV) system using only three un-
calibrated cameras. FTV is next-generation media that
enables us to see a scene from any viewpoint. A model-
based approach for realizing FTV requires real-time 3D
object capture using multiple cameras. Here, we pro-
pose a system for reconstructing 3D object surfaces
using the so-called 2D continuous dynamic program-
ming (2DCDP) method with factorization. 2DCDP is
a powerful technique for full-pixel optimal matching. It
provides pixel correspondences between the images cap-
tured by the three cameras. The proposed system works
well as a promising FTV system.

1 Introduction

Free-viewpoint television (FTV), which is different
from traditional television, is a next-generation system
that allows any user to change his or her viewpoint of
an object. The current TV system is only a projected
2D surface; it can carry separate views for the left and
right eyes to exploit the understanding of 3D depth
in the human vision system. FTV allows people to
change their viewpoint because captured objects are
projected onto 3D space [1]. Thus, FTV is truly a
next-generation system that we hope can be applied
to education, entertainment, medical, and other areas.

Prior research on FTV can be classified into two
types: view-based methods and model-based methods.
A view-based method aims to construct a 2D image
using interpolation techniques from many 2D images
that are in a 3D space. The ray-based method [2] is the
most popular technique among view-based methods; it
uses a ray-space technique to create a new viewpoint
image, mainly from neighbor images. A feature of the
viewpoint-based method is its ability to create natu-
ral 2D images from many cameras that are calibrated
precisely, and previously calculated epipolar geometry
for two particular cameras. However, it requires at
least several dozen and possibly hundreds of cameras
to achieve precise images. Thus, it is difficult and ex-
pensive to prepare environment for it.

On the other hand, with the model-based method, it
is easy to render free-viewpoint images if the model is
able to reconstruct them precisely. There are many
techniques for 3D reconstruction from images: the
stereo method [3]; shapes from silhouettes [4]; the fac-
torization method [5]; mixing factorization and epipo-
lar geometry for the projected space [6]; shape from
shading [7]; and photometric stereo [8]. Every tech-
nique has effective and weak points for developing
FTV. Shape from shading and photometric stereo can

achieve object shapes with very high precision, but it
is difficult to create effective textures and it is diffi-
cult to calculate a precise lighting position. Shape
from silhouette is easy to implement as a real-time sys-
tem [9, 10], but it is difficult to set camera positions
and parameters, and a large space like a studio is re-
quired. The stereo method and the epipolar geometry
method are well-implemented in many computer vi-
sion research, but these methods need strict-calibrated
cameras all have fixed positions and focuses. Thus,
these methods are difficult to extend in physical re-
sources. The factorization method does not require ini-
tial camera calibration and position information. This
method can reconstruct target objects precisely from
three or more cameras if the correspondence points in
the views can be fixed precisely.

For extracting precise image correspondence, Scale-
invariant Feature Tracker (SIFT) [11] is well known
method for image matching. Another method,
Kanade–Lucas–Tomasi Tracker with corner detec-
tion [12], is also used effectively to understand 3D
surfaces in real-world augmented-reality applications.
However, these image matching or tracking techniques
can track only sparse pixels of an image, rather than
the complete image. Thus, they can reconstruct rec-
tilinear artifacts, but it is difficult to reconstruct soft,
curved bodies like those of humans or animals.

We propose to develop a real-time FTV object cap-
turing system using a consumer PC. Our main con-
tribution is to use no calibrated camera, blue screen,
special sensor device or special hardware, but we
use a multicore CPU, three synchronous cameras and
an image-matching algorithm called 2D Continuous
dynamic programming (2DCDP), which gives dense
pixel-wise correspondences [13], with a factorization
technique for reconstructing a 3D surface from the
dense pixel-wise correspondence.

Section 2 gives an overview of our system and Sec-
tion 3 briefly describes key features such as 2DCDP,
factorization, and a morphing technique using 2DCDP.
Section 4 explains the result of FTV implementation,
and considers the precision of reconstructed objects.
Section 5 concludes this paper and describes our fu-
ture work.

2 System Overview

Our system is based on the 3D reconstruction sys-
tem developed by Yaguchi et al. [14], which can extract
dense pixel correspondences between input images and
reconstruct a trusted 3D surface. The key feature of
our system is 2DCDP image matching, which can give
precise dense correspondences between a reference im-
age and a target image. 2DCDP has a high calculation
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Figure 1. Schematic diagram of Free-viewpoint TV capturing system using 2DCDP and factorization

burden, thus our system uses a faster implementation
called weak spotting. An overview of this system is
shown in Figure 1. After acquiring a frame of three
images, the system finds the correspondences between
the center and left or right images and reconstructs 3D
points from the pixel correspondences. 2DCDP can
save pixel alignments on each image, thus the texture
of a 3D surface can be added directly to the recon-
structed 3D points via factorization method [15]. For
smooth movement between frames, this system applies
a morphing technique to interpolate several frames of
3D surfaces between the current and previous frame
by 2DCDP matching. Finally, the user can view the
3D image using a 3D surface viewer that can change
viewpoint easily.

Weak Spotting The current 2DCDP implemen-
tation was proposed by Yaguchi et al. in 2010 [13]
and in its optimal implementation [16], it can achieve
precise pixel-wise matching with an arbitrarily shaped
reference image. However, our system does not require
arbitrary shapes and large pixel movements because
the frame interval is at most 0.2 to 0.3 seconds. Thus,
our implementation applies an alignment window to
avoid the accumulation calculation. The alignment
window limits pixel movement between the reference
image and the target image.

With the measurement equation D(̂i, î,m, n), a pixel
(̂i, ĵ) optimally matches the target image S with a pixel
(m,n) on the reference image R, as follows:

D(̂i, ĵ, m, n) = (1)

min
ξ,η

{
M∑

m=1

N∑
n=1

d(ξ(m, n), η(m, n), m, n)},

where for a pixel in the target image set (i, j) ∈ S
and a pixel in the reference image set (m,n) ∈ R,
each i, j,m, n has a limit value I, J, M, N such as
i, j, m, n ⊂ N, i ≤ I, j ≤ J, m ≤ M, n ≤ N and a local
distance set d(i, j,m, n). In the accumulation calcula-
tion, the calculated correspondence between (m,n)∈R
and (ξ(m,n), η(m,n))∈S is almost moving only small
distance in continuous motion images. Then, suppose
M = I and N = J for each image, and the correspon-
dence pixel of (m, n) in the target image is close enough
so that (ξ(m, n), η(m,n)), ξ(m,n)=m, η(m,n)=n in
the target image S. The scope of the accumulation
calculation on position (m,n) in the target image can
then be defined as:

(ξ(m, n), η(m, n)) ∈ S, m − α ≤ ξ(m, n) ≤ m + α,

n − β ≤ η(m, n) ≤ n + β, (2)

and the coverage Φ of the calculation plane as:

Φ =
(2α + 1) ∗ (2β + 1)

I ∗ J
, (3)

which directly contributes to the reduced calculation
costs.

Optimization for the 3D Model For 3D recon-
struction, this system uses the factorization technique
proposed by Tomasi and Kanade [15]. This method
is not precise but is stable in the presence of noise,
and does not require the distances between cameras
and objects. A C implementation of the factorization
technique is used in Kanatani and Sugaya’s implemen-
tation of orthogonal factorization [17]. After creating
a 3D model from the pixel trajectory of three views,
the reconstructed object has depth errors, disarrange-
ment of x and y coordination and two solutions that
are enantiomorphic to each other. Thus, this system
optimizes each object to provide compatible time-series
3D motion images.

Let the αth three-dimensional point be
(xtα, ytα, z′tα) (i = 1, . . . , N) and its enan-
tiomorph (xtα, ytα, z′′tα) (i = 1, . . . , N, z′′tα = z′tα)
in a model St, which is taken at time t. We
also have a three-dimensional point N , and
this point has a two-dimensional texture anchor
(m′

tα, n′
tα)(0 ≤ xtα ≤ 1, 0 ≤ ntα ≤ 1). In this

implementation, St is the 3D object extracted using
the center camera coordination, and correspondences
between texture and the center camera image, which is
a reference image for 2DCDP matching, are expressed
as m′ � m

M , n′ � n
N . This texture coordination can

compensate for the distorted 3D shape St. The depth
map z′tα and z′′tαof St is not decided strictly, so this
system normalizes the depth map in the range of
0 ≤ z′tα, z′′tα ≤ 1. Next, to solve the enantiomorph
problem, we determine the correct depth map ztα as
follows:

ztα � argmin
z′

tα
,z′′

tα

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N∑
k=1

√
z′

tk − z(t−1)k

N∑
k=1

√
z′′

tk − z(t−1)k.

(4)

Finally, the model St is uniquely determined and the
system can continue to reconstruct 3D objects.

Interpolation on Each Frame using a Mor-
phing Technique People can extract motion from
pictures at rates of 7∼13 frames per second (fps) [18]
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(reconstructed mesh)

(projection plane)

Figure 2. Fixing a reconstructed object on the x
and y axes

Table 1. Specification sheet for the experiment
Machine Dell Precision Workstation T7400
CPU 2 × Intel Xeon X5472 3.0 GHz quad-core processors
Memory 64 GB DDR2 SDRAM
Graphics NVidia GeForce
Camera 3 × Pointgray Flea2 IEEE1394b
Image size 320×240 QVGA, RGB888 Color
Camera separation From 10 cm to 50 cm, optional
Object distance From 2 m to 4 m, optional

and above, and traditional movies have around 24 fps
recorded to film. Our system also tries to create a
24 fps movie but it is difficult to create a high-frame-
rate movie because the processing time for each frame
is around 0.1 msec, which exceeds the 0.04 msec avail-
able at 24 fps. Therefore, we plan to interpolate several
frames of 3D surfaces to achieve 24 fps using 2DCDP
and the nearest neighbor method.

Let the texture image of the current frame be the
target image S and let the texture image of the previ-
ous frame be the reference image R. 2DCDP describes
the motion between R and S as a pixel correspondence
(m,n) → (i, j). Now, let the number of interpolation
frames be F , and let the number of an interpolation
frame be f . Then the position (m′

f , n′
f ) of frame f is

(m′
f , n′

f ) → (m+(i−1)/f, n+(j−n)/f). Next, let the
color value Spf (mf , nf ) of pixel (mf , nf ) and the depth
value Sdf (mf , nf ) in interpolation frame f be defined
by the color value Spk(i, j), Rpk(m,n) and depth value
Sdk(i, j, Rdk(m,n), respectively, and let the distance
from the center of pixel dk =

√
(mf − m′

f )2 + (nf − n′
f )2

of three neighbor points be (m′
f , n′

f ):

Spf (mf , nf ) =∑3

k=1
[(1−dk){(1− f

F
)Spk(m,n)+ f

F
Rpk(i,j)]∑3

k=1
(1 − dk)

(5)

Sdf (mf , nf ) =∑3

k=1
[(1−dk){(1− f

F
)Sdk(m,n)+ f

F
Rdk(i,j)]∑3

k=1
(1 − dk)

. (6)

3 Experiment

In this section, we present three experimental re-
sults: a comparison study of 3D model accuracy us-
ing orthogonal factorization with 2DCDP and SIFT
matching, and performance evaluation of our imple-
mentation for frame refresh rate and its stability. The
evaluation environment is shown in Table 1. In 2DCDP
matching, the target image is cut by 10% at the top,
bottom, left and right side to define the occlusive area.

Comparison between SIFT and 2DCDP on
FTV System Figure 3 compares pixel tracking pre-

Original Images ( 320x240 )

SIFT base tracking ( 320x240 )

2DCDP base tracking (100x75)

Figure 3. Pixel tracking comparison between
SIFT and 2DCDP on FTV system

2DCDP + Factorization SIFT based tracking + Factorization + Delaunay

Figure 4. Comparison of the 3D reconstruction
result between SIFT and 2DCDP with orthogo-
nal factorization

cision between SIFT and 2DCDP. SIFT is good for
tracking if there is enough texture on the surface and
2DCDP can include the same positions as SIFT and
can also find more suitable points between two images.
2DCDP is forcibly matching on occlusions because an
occlusive pixel should not match anywhere. However,
3D reconstruction using factorization could not find
the segmentation area of each object; thus, the results
of 2DCDP and SIFT have almost the same errors with
occlusion areas such as an extended rubber-like sur-
face 4. In texture rendering, 2DCDP can readily deter-
mine the 3D surface because all pixels are structured
clearly, but SIFT matching must create a Delaunay
triangle to determine the plane for texture rendering.
This factor is a big advantage in real-time 3D recon-
struction.

Performance Evaluation for Processing Speed
and Image Size Figure 5 shows the processing time
for constructing a frame of a 3D surface. The image-
matching and fixing part require three 2DCDP pro-
cesses. In short, the cost of 2DCDP is almost 90% of
the total cost in this system. If we use this system in
real time on 5 fps (to create 25 fps with four frames in-
terpolated after each key frame), we must restrict the
image to 80 × 80 pixels.

Performance Evaluation for Precision and
Stability Figure 7 compares another viewpoint of
the actual scene and a reconstructed 3D view. From
this result, the precision of 3D reconstruction is not
adequate, because many occlusive areas create gaps in
objects, but the reconstruction can express the relative
position of the surfaces in 3D space. 2DCDP stores
the value of the color distance between matched pix-
els, thus this visual event error can easily be reduced
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Figure 5. Processing time for a frame of a 3D
surface: the vertical axis shows processing time
and the horizontal axis shows image size

center camera imageleft camera image right camera image reference image

80x60 100x75 120x90 160x120

Figure 6. Top: Comparison between recon-
structed 3D surface and another actual view-
point. Below: Several other viewpoints of the
3D surface

Figure 7. Comparison of precision of recon-
structed images between input image vs size

from that information. In this experiment, we created
5 min of a 3D surface movie. In this time, there is no
time to flip to another enantiomorphic surface, so our
system has enough stability to extract a 3D surface
continuously. We have also demonstrated real-time
3D reconstruction many times; sometimes the surface
was turned over because it had such strong noise in z
values for one pixel that the value was set to zero in
the normalization process, but that case is very rare.
This system can change camera position while record-
ing 3D objects, and this function is not available in
other image-based rendering techniques that do not use
factorization. Thus, the proposed system has enough
stability to capture 3D surfaces.

4 Conclusion

We have shown the feasibility of a model-based FTV
capturing system using 2DCDP and the factorization
method. 2DCDP has enough accuracy to determine a
pixel trajectory by pixel-wise matching, and orthogo-
nal factorization can reconstruct 3D surfaces.

At present, our system does not include any learning
techniques. Their incorporation will enable the system
to improve the precision of object shapes, and to use
motion recognition from matching between frames for

frame interpolation. For our next step, we plan to
implement a faster 2DCDP algorithm using a coarse-
to-fine strategy, install a GPGPU for speedup, and
solve conflicts of occlusive areas in postprocessing. We
should then be able to reconstruct objects precisely
and add textures to high-definition images.
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