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Abstract

This paper presents a novel algorithm to generate
homogeneous superpixels from the process of Markov
random walks. We exploit Markov clustering (MCL)
as the methodology, a generic graph clustering method
based on stochastic flow circulation. In particular, we
introduce a new graph pruning strategy called compact
pruning in order to capture intrinsic local image struc-
ture, and thereby keep the superpixels homogeneous,
i.e. uniform in size and compact in shape. Fur-
ther, this new pruning scheme comes with three advan-
tages: faster computation, smaller memory footprint,
and straightforward parallel implementation. Through
comparisons with other recent standard techniques, we
show that the proposed algorithm achieves an optimal
performance in terms of qualitative measure at a decent
computational speed.

1 Introduction

The unsupervised over-segmentation of an image re-
sults in small patches of pixels commonly called su-
perpixels. The objective of superpixels is to encode
an input image in a compact manner at a low-level
preprocessing stage while reflecting most of the struc-
tural information to facilitate a higher-level task such
as classification. Thus, two of the important require-
ments for superpixels are that (a) they should be com-
puted efficiently, and that (b) they are perceptually
meaningful with local coherency.
Superpixels first appeared in [9] where the Normal-

ized Cuts criterion [11] was applied using both contour
and texture cues. An alternative method is to em-
ploy mode seeking techniques such as mean shift [1],
or the recently introduced quick shift [13] which was
employed for example in the context of localising ob-
ject classes in images. Other possible methods include
a top-down approach by superpixel lattices [7], and a
bottom-up graph-based approach [2]. Generally, su-
perpixels form a basis for many other recent vision ap-
plications. See [4,14] for a few examples. A remaining
important challenge is, however, to generate homoge-
neous1 superpixels at a reasonable computational cost,
which is the goal of this work.
In this paper, we present a new and efficient ap-

proach to compute superpixels using Markov random
walks over the graph representation of an image. The
use of random walks in computer vision traces back
to the early work on texture discrimination [15], and
more recently the work of [3] motivated it for interac-
tive image segmentation using seed labels. It was also
shown that Normalized Cuts [11] can be viewed as a
process of random walks [6]. Although we also utilise
the representation of stochastic matrix, our approach

1We call superpixels ’homogeneous’ when they are uniform

in size and compact in shape.

Figure 1. MCL-superpixels process: overview.

Top-left: the input image initially interpreted as a
graph with a similarity function (graph edges over-
laid) Top-right: an intermediate state. Bottom-left:
the result, i.e., a set of disjoint trees. Bottom-right:
the borders between those trees showing clusters.

differs in that we do not perform any potentially ex-
pensive spectral analysis of the adjacency matrix and
mainly exploit the fact that random walks can capture
intrinsic local image structure.

We base our approach on Markov Clustering
(MCL) [12]. This is a general purpose graph clus-
tering method using stochastic flow circulation, which
has also been successfully applied to video segmenta-
tion [8]. See Figure 1 for an overview (we refer to our
approach as ’MCL-superpixels’ for convenience). How-
ever, MCL, in its original form, produces non homoge-
neous superpixels. Furthermore, it does not scale well
to large images as it fails to compute the square of the
stochastic matrix in a reasonable time, in spite of using
a standard sparse matrix scheme; for a megapixel im-
age, the size of this matrix is one trillion elements. To
address these two limitations, we extend MCL with the
technique of compact pruning, the main idea of which
is to enforce the flow circulation to be local, therefore
producing more homogeneous superpixels and making
the flow computation tractable at the same time. This
results in a new sparse matrix scheme which is capable
of dealing with huge matrix sizes and efficiently runs
on parallel computing architecture such as GPU.

Hence, the contributions of this paper are (i) a
novel method to generate superpixels using MCL, (ii)
a new pruning strategy for MCL called compact prun-
ing which allows us to generate more homogeneous su-
perpixels, and (iii) a new sparse matrix scheme which
allows us to lower the computation time and the mem-
ory consumption, and to exploit massively parallel ar-
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(a) The original MCL (b) MCL-superpixels

Figure 2. A comparison of clustered pixels. (a)
The superpixels generated by the original MCL pro-
cess are not homogeneous in size and shape. (b) Ex-
tending MCL with our new compact pruning results
in more homogeneous superpixels.

chitecture. We also compare the performance of our
approach with other recent techniques for computing
superpixels [2, 7, 9, 13], both in terms of the charac-
teristics of output superpixels and the computational
speed.

2 MCL: the Markov Clustering Algorithm

We first review the Markov Clustering (MCL) al-
gorithm [12] briefly. The main idea of MCL is to
repeatedly apply two operators on a given stochastic
graph. The first operator, called expansion, consists of
flow circulation which tends to mix area of similar ap-
pearance. The second operator, called inflation, makes
strong edges stronger and weak edges weaker, serving
the dual purpose of creating cluster boundaries and
electing a representative of each cluster at the same
time. After convergence (i.e. when the graph is stable
under those two operators), the graph has became a
disjoint set of trees (i.e. clusters).
More precisely, let us define an undirected graph

G = (V,E) with nodes v ∈ V and edges e ∈ E. We
denote an edge, e, spanning two nodes, vα and vβ , as
eβα and the value of its weight as w(eβα), or simply wβ

α.
First, G is transformed to a Markov graph, i.e. a graph
where for all nodes the weights of out-edges are posi-
tive and sum to one. Let us also consider the stochastic
matrix,

M = (wβ
α, α, β ∈ [1, N ]), (1)

which corresponds to the Markov graph (also called
Markov matrix), such that each entry is the edge
weight, wβ

α, and N is the total number of nodes.
The expansion operator is to compute the square

of M whereas the inflation operator is to take the
Hadamard power of a matrix (taking powers element-
wise) followed by a scaling step, such that the result-
ing matrix is stochastic again. In sum, given a non-
negative stochastic matrix, M, of a Markov graph,
G = (V,E), those steps can be formulated as

M2 = M2 expansion (2)

M1 = Hp(M2) inflation (3)

Mnew = N (M1) (4)

where Hp(·) and N (·) represent element-wise power
operation with a power coefficient, p, and column-wise
normalisation, respectively. The steps are repeated
while updating M with Mnew. The process stops
when it reaches an equilibrium where no difference is
observed between M and Mnew. At this stage, the
resulting graph, described by the resultant stochastic

matrix, appears as a set of disjoint trees whose union
covers the whole graph. Each tree defines a cluster
which can be uniquely represented by the tree root.
Thus, a given node can simply retrieve the identity of
the cluster to which it belongs by tracing the tree up
to its root.
The most important parameter governing the be-

haviour of the MCL process is the inflation parameter,
p, which influences the resolution of the output. A high
inflation value produces a higher number of smaller
clusters. The reader should note that the number of
clusters generated by MCL is emergent (i.e. not set
directly). Practically, the convergence time of MCL
greatly depends on the target resolution of cluster-
ing; the coarser the expected clusters are, the longer it
takes. Moreover, the convergence of MCL is known to
be more stable for fine resolution [12]. It is therefore
well suited to the computation of superpixels for which
a fine resolution is typically required.

3 Clustering Image Pixels Using MCL

We interpret an input image, I, with size nx×ny pix-
els as a graph G = (V,E). Each pixel corresponds to a
node in the set V = {vf(i,j) | f(i, j) ∈ [1, nx]× [1, ny]}.
The flat index function f(i, j) = j ·nx+ i returns a one
dimensional index to the node (i, j). The number of
nodes, N , is the total number of pixels; N = nxny.
The set of edges, E = {eβα}, connect neighbouring
nodes, e.g. vα=f(i,j) and vβ=f(m,n).
In order to reflect the image structure in the graph,

a common feature of graph based image analysis is to
define a function that maps a difference in image in-
tensities to edge weights. Although various weighting
functions can be used, in this paper, the adjacency
matrix is initialized using a simple similarity measure
considering an 8-neighbourhood using a typical func-
tion given by:

wβ
α = exp(−μ ‖I[m,n]− I[i, j]‖2), (5)

where I[i, j] = (r, g, b) denotes the intensity of the im-
age over the available channels. The value of μ is a free
parameter (we use μ = 10 in our experiments).
As explained earlier, applying the original MCL pro-

cess to produce superpixels is straightforward but it
suffers from two limitations:
Non homogeneous pixels: The shape of the result-
ing superpixels are not homogeneous in size and shape
(see Figure 1(a)). Indeed, MCL does not prevent clus-
ters from noticeably varying in size (e.g. from a cou-
ple of pixels to hundreds), nor does it prevent cluster
shapes from becoming complex (not compact).
Slow computation time: The bulk of the work of
the MCL algorithm is spent on computing the square of
the stochastic matrix, M2. For large images (e.g. one
megapixel) the computation time and memory foot-
print becomes too high. As a way to keep the com-
putation tractable, the standard MCL implementation
[12] comes with several pruning strategies, which aim
at approximating the matrix M by keeping it as sparse
as possible. Unfortunately, our experience shows that
these pruning strategies do not perform well when deal-
ing with graph representation of images which are typ-
ically sparse but of an extremely large dimension. For
example, the result in Figure 2 (a) took 58 seconds
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Figure 3. Compact pruning. During the conver-
gence of the MCL process, the edges of a given node
typically spread at the beginning (by expansion) and
finally shrink at the end (by inflation). Our new
compact pruning strategy consists of limiting the ini-
tial spread due to flow circulation by inhibiting edges
longer than r (represented by the red circle).

to produce around 2000 superpixels on the 300 × 225
pixels image and runs out of memory when using a
1024× 768 pixels image as input.
We deal with those two limitations by extending

MCL with our new compact pruning method as de-
scribed next.

4 Compact Pruning

We develop a new scheme to allow a better control
of superpixel homogeneity and guarantee sparsity of
the stochastic matrix that allows a fast computation of
M2. The scheme, called compact pruning, is primarily
based on the observation that for a fine resolution (to
generate small clusters), the flow does not circulate
globally in the whole graph but instead stays nearby
a given node. Therefore, one can give a reasonable
upper bound on the length of the new edges which are
created during the expansion step of the MCL process
(see Figure 3). Let r be a simple distance threshold
in pixels insuring the following condition during each
expansion step:

‖(m,n)− (i, j)‖ > r ⇒ w
f(m,n)
f(i,j) = 0 (6)

Note that this is an approximation whereas the MCL
process comes with a theoretical proof of convergence;
a stochastic matrix, when taken to any power, remains
a stochastic matrix, which means that the elements of
each column sums to one. When this approximation is
used, some entries corresponding to long edges will be
missing and the sum of the elements of a column can
then be lower than one. In practice, however, our mod-
ified MCL converges for all the images of the Berkeley
database [5]. This is not surprising as the original
MCL has been shown to be robust to all sorts of prun-
ing strategy which manipulates the inflation operator
to enforce matrix sparsity [12]. This distance thresh-
olding can be seen as another pruning strategy (hence
the name compact pruning), which manipulates the in-
flation operator to enforce matrix sparsity. See Figure
2 (b) for an example of MCL-superpixels.

5 Sparse Matrix Scheme

5.1 Node-centric matrix encoding

As stated in Section 3, given a huge stochastic ma-
trix M with dimensions equal to squared image size,
a proper strategy for matrix encoding is indispensable
in order to keep the algorithm feasible both in terms
of computation time and memory consumption. For
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Figure 4. Precomputation of 2-paths. Nodes
(pixels) are shown in blue dots. Left: The ta-
ble offset is indexed (with zero-based indexing) by
e ∈ [0, Ne[ and contains the 2D jumps offset[e] =
(ox, oy) allowing to jump from a given node vi,j to its
neighbour vm,n with (m,n) = (i, j)+ offset[e]. In
this case, offset=[(0, 0), (1, 0), (1, 1), (0, 1), (−1, 1),
(−1, 0), (−1,−1), (0,−1), (1,−1)] (in red). Right:
For a given edge indexed by e, the table detour[e]

contains the indices (efirst , esecond) allowing to jump
from vi,j to vm,n via vs,t with the paths in (8)
and (9). For example, the red edge is indexed by
e = offset[2] = (1, 1). The corresponding 2-paths
are detour[2] = [(1, 3), (3, 1), (0, 2), (2, 0)].

this requirement, we opt for a node-centric representa-
tion which essentially retains the image as the basic 2D
structure of the graph: each node contains the edges
which are departing from it.
Consequently, edge weights are stored in a volume

L whose size is nx × ny × Ne where nx × ny is the
size of the input image and Ne is the number of edges
departing from each node (i.e. pixel). Thanks to the
compact pruning scheme, the maximum number of non
null edges departing from a given node is known in
advance, allowing us to allocate the volume only once
at initialisation.
The edge entry, L[i, j; e], starts from the node

vi,j to point a node at (i, j) + offset[e] where
the table offset represents an offset defined by
a small precomputed table containing all the 2D
jumps which can be made from a given node.
For example, for r = 1, the table is offset =
[(0, 0), (−1, 0), (+1, 0), (0,−1), (0,+1)]. Due to the
regular nature of an image graph, a unique table is
shared by all the nodes instead of computing it specif-
ically for each node.

5.2 Sparse matrix multiplication scheme

A notable benefit of our new matrix encoding is that
it substantially facilitates the square computation of
the stochastic matrix, M. Each element of M2 = M2

in its original form is given by:

w′β
α =

N∑

γ=1

wγ
αw

β
γ . (7)

Let us review the meaning of equation 7 from a graph
point of view. The weight, wβ

α, of an edge, eβα, is re-
placed by the sum of the products of weights on all
the 2-paths (i.e. 2 consecutive edges) linking the node
vα and vβ via a third node, vγ . Retrieving those 2-
paths at computation time would be too expensive.
Instead, the new encoding L allows us to quickly de-
termine which edges depart from vi,j .
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Figure 5. Superpixels by different approaches. From top-left to bottom-right: Input image, MCL-superpixels
(proposed), NCuts, Quick shift, Lattice, and Graph-based. Note that the size and shape characteristics of superpixels
are different from one another. MCL-superpixels and NCuts generate relatively regular superpixels.

We introduce a more effective alternative by pre-
computing all those 2-paths. This pre-computing
would be too memory expensive in an irregular graph
because each node would need its own set of 2-paths.
Fortunately, the regular nature of an image graph al-
lows us to ”factorise” those sets into a single look-
up-table. During the computation of M2 with the
new matrix encoding, the weights on edges indexed by
e ∈ [0, Ne[ (note the use of zero-based indexing) need
be updated for each node vi,j . The e-th edge starts
from vi,j and arrives at vm,n where (m,n) = (i, j)
+ offset[e]. In this context, a 2-path connecting
(i, j) → (s, t) → (m,n) can be described using the
indices [efirst, esecond] where

(s, t) = (i, j) + offset[efirst], (8)

(m,n) = (s, t) + offset[esecond]. (9)

Therefore, we can precompute a look-up-table which
encodes 2-paths by two indices, efirst and esecond, for
each e ∈ [0, Ne[ (see Figure 4). We denote the table
as detour since it represents 2-pathes via a third
node. The complexity of our algorithm is O(Nr4) as
opposed to O(N3) for the original MCL. The pseudo
code of the algorithm below clarifies the process that
each element of L is systematically updated in Lnew :

function computeF low(L,Lnew)
. for// (i, j) ∈ [0, nx[×[0, ny[ # parallel execution
. . for e ∈ [0, Ne[
. . . (m,n) = (i, j) + offset[e]
. . . wm,n

i,j = 0

. . . for (efirst, esecond) ∈ detour[e]

. . . . (s, t) = (i, j) + offset[efirst]

. . . . ws,t
i,j = L[i, j; efirst]

. . . . wm,n
s,t = L[s, t; esecond]

. . . . wm,n
i,j + = ws,t

i,j · w
m,n
s,t

. . . Lnew[i, j; e] = wm,n
i,j

5.3 GPU implementation

The algorithm to compute M2 using node-centric
matrix encoding maps well to a parallel architecture
like GPUs (one thread per pixel). Computing the in-
flation is also straightforward (one thread per pixel as
well). We have therefore implemented the entire MCL
process on a GPU. On small images, we observed a
10 times speedup (on larger images, the original MCL
runs out of memory).
We implemented our algorithm using Cuda on a

GPU NVIDIA Quadro Fx 4600 using single precision
floating point (345 GFLOPs). The original MCL runs
on the CPU, an 8-cores 2.3 GHz computer with 3.25
GB of RAM.

6 Experimental Results

We evaluate our algorithm both in terms of the qual-
ity of generated superpixels and the computation time
through a comparison with four other methods which
we refer to as: NCuts (the Normalized Cuts) [9], Quick
shift [13], Lattice [7] and Graph-based [2]. We compute
the MCL-superpixels using the MCL inflation param-
eter, p = 1.4, and the distance threshold for compact
pruning, r = 4.5. Our comparison focuses on the gen-
eration of a large quantity of small superpixels; there-
fore we tried to keep the number of clusters resulting
from each methods to an approximately similar value.
Figure 5 demonstrates the quality of superpixels for

an example of ’starfish’ image (481×321 pixels). Also,
Table 1 shows our study on the performance of those
different approaches using all the 300 images of the
Berkeley database [5] (see Appendix for the evaluation
criterion of homogeneity: Area, VoA and the isoperi-
metric quotient, Q). Although Quick shift, Lattice and
Graph-based are considerably faster, those methods
are less suitable to produce small and homogeneous
superpixels as observed subjectively, and also in their
high values of VoA and low scores of Q. NCuts pro-
duces similar superpixels to MCL-superpixels and they
appear better at sticking to blurred edges but this is
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Figure 6. MCL-Superpixels with different compact prunning. From left to right: MCL-superpixels computed
with a distance threshold for compact radius r equal to 2,3,4 and 6. The inflation parameter is set at p = 1.4. A
greater compact radius produces bigger supperpixels.

at a cost of generating long, thin superpixels in some
parts. We also tested our algorithm and NCuts on a
bigger image of size 1024 × 768 pixel; our algorithm
completed in a minute and NCuts could not complete
due to an out of memory error. In summary, MCL-
superpixels achieves desirable properties, high score of
Q and relatively low VoA, at a speed that is ten times
faster when compared to NCuts (for which no GPU
implementation is known).

Figure 6 demonstrates the effect of changing the
compact pruning radius: the greater it is, the bigger
are the superpixels. In that sense, the distance thresh-
old r and the inflation parameter p play an overlapping
role: both control the resolution of the clusters. Ide-
ally, those two parameters should be reformulated so
that one control the size of the superpixels and the
other their homogeneity; this is left for future work.

Time [sec] Area VoA Q

MCL-superpixels: 21.45 68 0.33 0.81
NCuts: 231.5 95 0.13 0.83
Quick shift: 2.556 174 0.82 0.63
Lattice: 0.537 100 0.93 0.57
Graph-based: 0.232 75 2.75 0.49

Table 1. Evaluation of different approaches.

The results are averaged for all the images of Berke-
ley database [5]. See the appendix for the evaluation
criterior.

7 Conclusion

We have presented a novel method to generate su-
perpixels using the MCL process and a new pruning
strategy, compact pruning, which eases the generation
of superpixels in four ways. First, it makes the shape of
superpixels more homogeneous by keeping the flow lo-
cal. Second, the computation are faster due to sparser
stochastic matrix. Third, the memory consumption is
much lower (for the same reason). Fourth, it is easily
amenable to a heavily parallel implementation due to a
static graph topology. We have demonstrated the per-
formance of our algorithm in comparison with other
relevant techniques, and shown its capability in gener-
ating relatively homogeneous superpixels at a reason-
able computational speed – a feature unique to MCL-
superpixels.

A Evaluation Criterior
We denote superpixels in an image as sj , j = 1, ..., K and

their areas as A(sj). We compute Areas, the average of
A(sj), and VoA, the variance of A(sj) normalized by Areas

as a measure of size. We also evaluate the homogeneity of
superpixels by the isoperimetric quotient, Qj ,

Qj =
4πA(sj)

L2(sj)
(10)

where L(sj) is the perimeter of sj . Notice that, 0 ≤ Qj ≤ 1.
The closer the shape of sj is to a circle, the higher Qj is.

We compute Q = (1/K)
∑K

j=1
Qj for each image.
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