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Abstract

In this paper, we present a new adaptive particle
filter method for tracking multiple interacting targets.
We introduce a sampling strategy to consecutively sam-
ple particles and adapt their spreading according to cur-
rent measurements. For multiple targets, we develop
a new concept of guiding the particles by current mea-
surements of adjacent targets. Our method does not in-
crease the computational complexity. Experimental re-
sults for tracking of multiple vehicles demonstrate that
the search space is explored more efficiently. Further,
we show that our method improves the robustness of
the tracker when the target motion abruptly changes or
the target is totally occluded.

1 Introduction

Visual tracking of multiple objects is of broad inter-
est, because it provides the input for various surveil-
lance and scene analysis applications. In this work, we
present a new approach to efficiently sample the par-
ticles in a particle filter framework by integrating the
behavior of interacting targets.
Particle filtering for visual object tracking is a well-

established method, which can handle non-linear/non-
Gaussian dynamics and observation models of the tar-
get [4]. The choice of the importance function, which
guides the placement of the samples, is crucial for the
performance of the particle filter. Conventional par-
ticle filters use the motion model of the target as the
importance function. This choice requires the motion
model to represent the dynamics of the target properly.
In practice, these assumptions may not be valid due to
a low frame rate of the video sequence, which lets the
motion of the targets appear abruptly. Other sampling
schemes that aim to lead the samples to promising re-
gions of the sample space are found in literature. For
example, [10] proposes an adaptive sampling scheme,
which requires a specification of a density grid to parti-
tion the 2D sample space. In the multiple target case,
such methods are prone to distract the samples by false
positive alarms from similar objects. The combination
of swarm intelligence with particle filtering is intro-
duced in [9]. This approach suffers from high com-
putational cost, because the observation model needs
to be evaluated multiple times for each particle until
convergence.
Classical particle filter approaches to track multiple

targets can be separated into two categories: Indepen-
dent particle filters that run one instance of the parti-
cle filter for each target [1, 8] and joint particle filters
that merge the states of all targets into one state vec-
tor [6]. The latter is not practicable, because the state
space grows exponentially in the number of targets to

be tracked, leading to an infeasible computational com-
plexity [5]. Therefore, we use one particle filter for each
target.

It can be observed that adjacent targets may affect
the motion of each other. Recent work showed that
incorporating additional knowledge about the target
context improves the tracking performance [3].

Our method consists of two parts: First, we intro-
duce an adaptive importance sampling algorithm. We
propose a new strategy to handle abrupt motion by
consecutively increasing the noise of the motion model
based on current measurements. Second, we include
the dynamics of adjacent targets into the particle filter.
For this, current measurements of neighboring targets
are integrated into the sampling process. Our proposed
method comes at almost no additional computational
cost, because no extra measurements are required.

2 Particle Filter Basics

The problem of tracking can be defined as estimat-
ing the state of the target for every time step based
on all available measurements up to this time step.
Particle filtering for visual tracking has been intro-
duced by Isard and Blake with the Condensation al-
gorithm [4]. The key idea of particle filtering is to
represent the posterior p(xt|y1:t) of the state vector
xt at time step t given the sequence of measurements
y1:t = (y1, . . . ,yt) by a set of particles. At each time
step, new samples {xi

t, i = 1, . . . , N} are randomly
drawn from the importance function. The associated
weights {wi

t, i = 1, . . . , N} are computed by the princi-
ple of sequential importance sampling [2] and normal-

ized such that
∑N

i=1
wi

t = 1. The computation of the
weights involves the evaluation of the likelihood func-
tion p(yt|xi

t), which is given by the observation model.
Conveniently, the importance function is chosen to be
the prior p(xt|xt−1), which describes the motion model
of the target. The approximation of the posterior at
time step t is given as

p(xt|y1:t) ≈
N∑
i=1

δ(xt − xi
t)w

i
t. (1)

After some iterations of the particle filter algorithm, all
but one particle will have negligible weights. To over-
come this degeneracy problem, a resampling procedure
is applied, which aims to replace the set of weighted
particles by a set of uniformly weighted particles. The
resampled set is generated by simulating new samples
according to the distribution of the old sample weights.
If resampling is applied at every time step and the

prior is used as the importance function, the weights
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are determined by evaluating the likelihood function
at that particular sample position:

wi
t ∝ p(yt|x

i
t). (2)

The choice of the importance function plays an impor-
tant role for the performance of particle filter trackers.
The approximation of the posterior will give poor re-
sults, if the importance function places the particles in
the tails of the likelihood function. The “optimal” im-
portance function is given by p(xt|x

i
t−1,yt) [2]. How-

ever, in most cases this function can not be sampled
from and other strategies are required to integrate the
current measurements into the sampling process.

3 Adaptive Importance Sampling

In this section, we introduce a new method to adapt
the motion model during the sampling process. Our
approach is based on the motion model of the target
as the importance function.

3.1 Adaptive Noise of the Motion Model

The motion model of the target can either be de-
scribed by the prior p(xt|xt−1) or as a function of the
state xt−1 and the process noise ut−1:

xt = f(xt−1,ut−1) (3)

The process noise ut−1 determines the amount of dif-
fusion by which the particles are distributed across the
search space. Clearly, a high process noise enables the
particles to capture abrupt motions of the target at the
risk of being confused by false positive alarms. On the
other hand, a low process noise concentrates the par-
ticles at the position predicted by the motion model
of the target. For the sake of simplicity, in the fol-
lowing we assume that the noise follows a Gaussian
distribution, ut−1 ∼ N (μ, σ2). We describe our sam-
pling method for the single target case. The extension
to multiple targets is straightforward.
In order to integrate current measurements into the

sampling process, we consecutively sample the parti-
cles and measure each particle immediately to obtain
its weight wi

t from (2). Without loss of generality, it
is assumed that wi

t ranges between 0 and 1. Starting
with zero noise, the noise increases monotonically until
it reaches its maximum value σmax, which is defined by
physical constraints on the motion of the target. The
amount by which the noise increases depends on the
weight wi

t of the previously sampled particle, the pre-
vious noise standard deviation σi and the number of
steps i:

σi+1 = σi +
1

N − i
(1− wi

t)(σmax − σi) (4)

The term 1/(N − i) ensures, that σ increases slowly
in the beginning of the particle sampling and approxi-
mates σmax as i approaches the total number of parti-
cles N . As long as the particles obtain a high weight,
the noise increases moderately, because in this case we
assume that the target has been captured. This ap-
proach has the advantage that if the target lies near
to the predicted position, the tracker is less likely to

be confused with false positive alarms. Still, the noise
is guaranteed to reach its maximum to account for the
case that the predicted position contains a false pos-
itive alarm. If the particle weights are low, the noise
increases strongly to allow the particles to spread out
widely across the feasible search space and capturing
the target. In this way, the noise adapts to the quality
of the sampled particles, which leads to a more effi-
ciently explored search space.
The particles are proceeded in descending order ac-

cording to their weight (before the resampling process)
in the previous time step. If particles with a high
weight represent the true target state and the motion
model without noise reflects the true motion of the
target, then their propagation according to the motion
model (3) will produce again highly weighted particles.

3.2 Context-Aware Particle Sampling

The motion of one target normally influences the
motion of adjacent targets. More precisely, the dy-
namics of the respective target are constrained by the
position and movement of adjacent targets to avoid
their collision. To incorporate this context knowledge
into the particle filter, we consider the measurements of
neighboring tracked targets during the sampling pro-
cess of the current target. Thus, we sample the parti-
cles in rounds, where each round comprises the sam-
pling of one particle for each target. Again, the parti-
cles are weighted immediately after sampling. We as-
sume that the spatial configuration of neighboring tar-
gets is constant between two consecutive video frames.
Let x̂t−1,k and x̂t−1,l denote the estimated positions

of the current target k and its neighbor l in the previous
time step. In each round i, a highly weighted particle
xi
t,l may become a guide for the particle to be sampled

of a neighboring target k in the next round. This guide
is determined as

gi+1

t,l = xi
t,l + (x̂t−1,k − x̂t−1,l). (5)

Propagating the current particle position by the mo-
tion model, the resulting position is defined as

bi
t,k = f(xi

t−1,k,ut−1,k). (6)

For the final sampled particle position xi
t,k, the guides

from all neighboring targets and the motion model of
the respective target are considered by a weighted com-
bination of both (Figure 1):

xi
t,k = bi

t,k +

(∑
l

sl(g
i
t−1,l − bi

t,k)

)
/M, (7)

x̂t−1,l

x̂t−1,k

bi
t,k

gi
t,l xi−1

t,l

Figure 1. Sampling of the particle for the current
target k using the guide from neighbor l.
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Algorithm 1 Adaptive Importance Sampling

σ0 ← 0
for i = 1 to N do � rounds

for k = 1 to K do � targets
M ← 0 � number of guides
for all neighbors l of k do

if wi−1

t,l is large enough then

• gi
t,l ← xi−1

t,l + (x̂t−1,k − x̂t−1,l)
• Compute the weight sl
• M ←M + 1

end if
end for
• bi

t,k ← f(xi
t−1,k,ut−1,k),

ut−1,k ∼ N (μ, σi
k

2
)

• xi
t,k ← bi

t,k +
(∑

l sl(g
i
t−1,l − bi

t,k)
)
/M

• Calculate the weight wi
t,k according to (2)

• σi+1

k ← σi
k + 1

N−i
(1− wi

t,k)(σmax − σi
k)

end for
end for

where M denotes the number of guides. The weights
sl determine how far the particle sampled by the con-
ventional motion model (6) should be shifted toward
the guided position. Typically, these weights depend
on the weight wi−1

t,l of the particle that became a guide
in the previous round. We model this property as a
sigmoid function (Figure 3).
The definition of neighboring targets typically in-

cludes the distance to the current target and the rel-
ative velocity in the last time step, if collision of the
targets should be avoided.
An algorithm that contains both the adaptive noise

strategy and the particle sampling method guided by
neighboring targets is shown in Algorithm 1. Note that
no additional evaluations of the likelihood function are
necessary.

4 Experimental Results

We conducted experiments on real data to show the
effectiveness of the adaptive importance sampling algo-
rithm. Our dataset contains image sequences showing
moving vehicles in a complex inner city environment.
Because of the low framerate (2 fps), abrupt motion is
likely to occur. Our basic particle filter tracking frame-
work is adopted from [7]. We use a constant velocity
model for the motion model, where the noise repre-
sents the longitudinal and lateral acceleration of the
vehicle. The observation model contains both a shape
based matching and a color histogram matching. The
parameter estimation is done by a weighted mean shift
clustering algorithm. For all experiments, the number
of particles for each vehicle is set to 100.
First, we demonstrate the efficacy of the adaptive

noise strategy of the motion model. For a single target,
Figure 2 shows how the noise adaptively increases de-
pending on the quality of the sampled particles. In the
first case (Figure 2(a)), high weights of early sampled
particles indicate the capture of the target. There-
fore, the noise is slowly increasing to lower the risk
of the particles capturing a false positive alarm. In
the second case (Figure 2(b)), the early sampled par-

(a) (b)

Figure 2. Increasing noise of the motion model.
Dark regions represent high values of the particle
weight.

ticles feature low weights. Apparently, the target is
not located around the position predicted by the mo-
tion model and the noise increases strongly to cover a
wider area of the search space. Compared to the first
case, the noise is twice as high after the first half of the
particles has been sampled. This strategy enables the
sampling process to finally hit the target and success-
fully continue tracking.
Second, we prove that our context-aware particle

sampling method can increase the robustness of the
tracker. In this experiment, the image sequence con-
tains bridges where the vehicles are totally occluded
for up to two frames. The adaptive noise of the motion
model as in section 3.1 is used. The sigmoid function
for computing the weights sl is defined as

sl = 1/
(
1.1 + exp(−25wi−1

t,l + 15)
)
, (8)

where the parameters are determined experimen-
tally (Figure 3).
Without using the guiding from adjacent vehicles,

the tracker loses one target (Figure 4, left, cf. red tra-
jectory). When the positions of adjacent vehicles are
taken into consideration during the sampling process,
the tracker successfully maintains all trajectories (Fig-
ure 4, right). Using the context-aware sampling strat-
egy, the tracker may be distracted by false positive
alarms, though (Figure 4, right, cf. green trajectory).
However, when the vehicle is visible again, the tracker
correctly assigns the trajectory.
Finally, we evaluate the performance of our tracker

with an image sequence showing a number of vehicles
under poor illumination conditions. In this example,
both the adaptive noise strategy of the motion model
and the context-aware sampling are used. Figure 5
shows that all vehicles are tracked successfully during
this sequence.

wi−1

t,l

sl

Figure 3. Weight sl as a sigmoid function of the
particle weight.
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Figure 4. Test sequence with 2 fps showing frames 4, 9, 14, 19 in full resolution. Left column: without
context-aware sampling. Right column: With context-aware sampling. The current vehicle position together
with the recent trajectory is shown. Extrapolated trajectories are displayed in white.

Figure 5. Test sequence with 2 fps showing frames 3, 6 and 10 in full resolution. The current vehicle position
together with the recent trajectory is shown. Extrapolated trajectories are displayed in white.

5 Conclusions

In this paper, we developed a new method to adap-
tively sample the particles based on the motion model
of the target. Experiments showed that our parti-
cle filter tracker enables the particles to explore the
search space more efficiently. For tracking multiple tar-
gets, we introduced a context-aware sampling method,
which considers the motion of adjacent targets dur-
ing the particle sampling process of the current target.
This strategy improves the robustness of the tracker,
as experiments with totally occluded targets showed.
In future work, we aim to develop models for han-

dling complex spatial relations of adjacent targets.
Further, we plan to perform statistical evaluations on
large complex tracking scenarios.
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