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Abstract

This paper presents an original system for the au-
tomatic classification of normal versus abnormal en-
domicroscopic images of the respiratory alveolar sys-
tem. Images from the alveoli were acquired in-vivo
using a newly developed technique, based on confocal
microscopy. The classification process includes a 120-
feature extraction step followed by an SVM based clas-
sification. Results are excellent for non-smoker im-
ages and demonstrate the great help of this system for
computer-aided diagnosis, using confocal microscopy.

1 Introduction

1.1 Medical background

The lungs are the essential respiration organ. They
are divided into two anatomic and functional regions:

• the air conduction system, that includes the tra-
chea, bronchi, and bronchioles,

• and the gas-exchange region, or lung parenchyma,
made of alveolar sacs. These sacs are made up of
clusters of alveoli, tightly wrapped in blood ves-
sels, that allow for gas exchange.

Whereas the conduction airways can be explored in
vivo during bronchoscopy, the alveolar region was
until recently unreachable for in vivo morphological
investigation. Therefore, the pathology of the distal
lung is currently assessed only in vitro, using invasive
techniques such as open lung biopsies. No real time
imaging was available.

A new endoscopic technique, called Fibered Con-
focal Fluorescence Microscopy (FCFM), has recently
been developed that enables the visualisation of the
more distal regions of the lungs in-vivo [8]. The
technique is based on the principle of fluorescence
confocal microscopy, where the microscope objective is
replaced by a fiberoptic miniprobe, made of thousands
of fiber cores. The miniprobe can be introduced into
the 2mm working channel of a flexible bronchoscope
to produce in-vivo endomicroscopic imaging of the
human respiratory tract in real-time. Real-time

Figure 1: FCFM images of healthy cases

alveolar images are continuously recorded during the
procedure and stored for further analysis. This very
promising technique could replace lung biopsy in the
future and might prove to be helpful in a large variety
of diseases, including interstitial lung diseases [9].

A clinical trial is currently being conducted that
collects FCFM images in several pathological con-
ditions of the distal lungs. This trial also includes
a control group of smoker and non smoker healthy
volunteers. This strategy provides a dataset of normal
images, that can be compared with pathologic ones.

The images recorded within the alveolar regions of
the lungs have not been very well described so far.
These images represent the alveolar structure, made
of elastin fiber (Figure 1), with an approximate reso-
lution of 1μm per pixel. This structure appears as a
network of (almost) continuous lines. This elastic fiber
framework can be altered by distal lung pathologies
and as one can see on Figure 2, images acquired on
pathological subjects differ from the ones acquired on
healthy subjects. The great complexity of these new
images justifies the development of reproductible soft-
ware tools for computer aided diagnosis, that enables
automatic image description for diagnosis and follow
up of pathological situations.

1.2 Aim of the study

The aim of the study is to conceive and develop
methods for automatic analysis of FCFM images, so
as to discriminate healthy cases from pathological
cases. In order to perform this 2-class classification,
the system relies on 60 annotated images acquired
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Figure 2: FCFM images of pathological cases

Figure 3: Difficult cases in FCFM images: healthy sub-
jects (top), pathological subjects (bottom)

during the clinical trial, coming from both healthy
(38) and pathological (22) cases.

The remaining of this paper is organized as follows:
our classification method is described in Section 2, and
results and discussion are provided in Section 3. Sec-
tion 4 concludes and draws some perspectives for this
work.

2 Image classification method

As usual in data classification methods, our system
includes a feature extraction step and a classification
step [4].

2.1 Feature extraction

Features must be chosen to allow the discrimina-
tion between healthy and pathological subjects. As
shown in Figure 3, some images present difficulties
where pathological cases can be visually misclassified
for healthy ones and vice versa. The choice of features
is therefore critical.

Several general characteristics can be observed
from the visual analysis of the images. As shown in
Figure 1, the alveolar structure in healthy subjects
can be described as contrasted continuous lines and
curves. On the opposite, in the pathological subset,
the disorganization of the meshing is illustrated by
the numerous irregularities and the tangle of the

Figure 4: From left to right, top to bottom: original
FCFM image, 16 subwindows, binarized image, skele-
ton on binarized image

fibered structures (see Figure 2). Differences are
mostly visible for the structure shape, image texture
and contrast implying that numerical features must
therefore be chosen among the ones that best describe
the visual differences from these three points of view.

The structure contrast can be characterized by
studying first order pixel gray level distribution and
computing pixel densities. Because structures also
show local differences, local parameters are computed
on subwindows of the image. Subwindows are obtained
by dividing by 4 the image height and width (Figure
4). Features characterizing the image contrast are:

• first order statistics on global and local histogram:
mean, variance, skewness, kurtosis, entropy ;

• global and local pixel densities obtained on bina-
rized images using Otsu thresholding;

• the sum of the image gradient values, obtained
using Prewitt operator.

We could suppose that pathological images will
have high values for densities, since a large number of
pixels having high value cover a large part of the image.

The complexity of the structure shape can be
characterized by studying the image skeleton. After
skeletonization [3] obtained on the binary image, the
number of junction points is computed. One can
suppose that on clearly organized, healthy images, this
number will be small, contrary to pathological images
where the meshing mess will induce a higher number
of points.

The image texture can be characterized by
Haralick parameters computed from cooccurrence
matrix [6]: energy, contrast, homogeneity, correlation,
along 4 directions (0˚, 45˚, 90˚, 135˚).
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A total of 120 features are computed, as shown in
Table 1.

Table 1: Features used to characterize FCFM images
Features Number

Global histogram statistics 5
Local histogram statistics 80

Contrast Density 1
Local densities 16

Sum of image gradient 1

Shape
Number of junction points

1
in skeleton

Texture Haralick parameters 16
Total 120

2.2 Classifier

On the previously cited features a Support Vec-
tor Machine (SVM) classifier is implemented [10].
SVM is one of the most performing and most used
classification algorithm. The support vector machine
classifier is a binary classifier algorithm that looks
for an optimal hyperplane as a decision function in
a high-dimensional space. A classical choice for the
kernel is the polynomial kernel.

In order to improve the prediction performance of
the classifier, and to provide faster and more cost-
effective decision, variable selection [5] can be used.
It can also provide a better understanding of which
visual features discriminate the data. Support Vec-
tor Machine - Recursive Feature Elimination (SVM-
RFE) is one way to perform variable selection [7]. The
goal is to find a subset of size r among d variables
(r < d) which maximizes the performance of the pre-
dictor. The method is based on a sequential backward
selection. One feature at a time is removed until r fea-
tures are left. The removed variables are the ones that
minimize the variation of the margin.

2.3 Learning and test base constitution

FCFM images are now to be divided into a learning
base and a test base. Because of the small number
of images, a cross validation process is used, which
consists in dividing the image base into n folds (n = 3
here). Two folds are used for learning and the last
one for testing. Performance are averaged on the
three folds. Cross validation is also randomly sampled
500 times, so as to make accuracy more reliable and
reduce the bias. Performance given in Section 3 are
then averaged on these 500 trials and variance is also
computed.

Because of the large difference between non-smoker
and smoker images, experiments have been conducted
separately on those two groups (Table 2). Indeed, alve-
olar fluorescence imaging in smokers dramatically dif-
fers from imaging in non-smokers. Whereas FCFM ex-
clusively images the elastin framework of the alveolar
ducts in non-smokers, in smokers, tobacco-tar induced
fluorescence allows to observe the alveolar walls and
the presence of macrophages (cells which digest cellu-
lar debris), as shown in Figure 5.

Figure 5: FCFM images of smoker, healthy (left)
and pathological (right) cases. Notice the presence of
macrophages.

Table 2: Number of images
Healthy Pathological
subjects subjects

Non smoker 23 10
Smoker 15 12
Total 38 22

3 Results

The SVM classifier and SVM-RFE based feature
selection [7] are implemented using the SVM and
Kernel Methods Matlab Toolbox [2]. The system
performance is assessed with correct classification
rate for both classes, false negative rate, which is the
proportion of healthy instances that were erroneously
reported as pathological and false positive rate, which
is the proportion of pathological cases considered
healthy. Variance is computed over the cross vali-
dation sampling. Other statistical measures used to
assess the performance of our system are recall, which
is the number of healthy cases recognized as healthy,
divided by the total number of healthy cases in the
database, and precision, which measures the number
of healthy cases recognized as healthy, divided by the
total number of cases recognized as healthy by the
system.

Results on non-smoker images. These results,
shown in Table 3, are excellent for the considered
database. Thanks to feature selection, the number
of features, initially 120, drops down to 33, without
modification in the performance. The selection of
relevant variables allows to gain some insight about
the usefulness of features: the most discriminating
ones are texture-based features, the local pixel densi-
ties and the sum of image gradient, which highlights
the importance of local, contrast-based differences
between healthy and pathological subjects.

Results on smoker images. Results are less satis-
fying as shown in Table 4. Chosen features do not seem
to be adequate for discriminating healthy and patho-
logical subjects. They could be improved by the use of
other features such as for example Haar wavelets, Ga-
bor filters, or by drastically increasing the number of
features. Other classifiers, such as random forests for
instance, could also help to make classification more re-
liable [1]. Note also that feature selection reduces the
number of features only to 98, not showing a real inter-

473



Table 3: Results on the non-smoker image base
Without/with

feature selection
Feature number 120 / 33

Classification rate 1.00
Error rate 0.00
Variance 0.00

False positive 0.00
False negative 0.00

Recall 1.00
Precision 1.00

Figure 6: FCFM images of smoker, showing how the
line network is hidden behing the macrophages. Net-
work is highlighted on the right image.

est in variable selection, despite a slight increase of the
classification rate. Retained features are texture-based
features, local pixel densities, the sum of image gra-
dient and local histogram statistics. Global contrast
features and the number of junction points seem to be
of no interest, because the line network is hidden be-
hind macrophages, making it difficult to characterize
the structure (Figure 6).

Table 4: Results on the smoker image base
Without feature With feature

selection selection
Feature number 120 98

Classification rate 0.80 0.83
Error rate 0.20 0.17
Variance 0.10 0.09

False positive 0.23 0.16
False negative 0.17 0.18

Recall 0.83 0.82
Precision 0.82 0.87

4 Conclusions

The present work deals with the classification
of a new category of images from the distal lung.
The images were acquired using a fibered confocal
fluorescence microscopy, a technique that enables
the observation of in vivo alveolar structures for the
first time. Such images are not well described so
far, and difficult to discriminate by pathologists and
respiratory physicians. Our classification system, that
aims at discriminating healthy cases from pathological
ones, shows excellent performance for non smoker
images. However, the corresponding database should
be extended to confirm these results, by extending the

image dataset. Because the clinical trial is ongoing,
this will be feasible in the near future. Conversely,
the classification rate on smoker images is lower
(83%), and needs to be improved by using other
texture-oriented features, as well as more reliable
classifiers such as random forests for example.

Future work will also concern rendering the process
real-time, so as to aid the clinician during examination
in real time. Classification methods could also give in-
formation about which part of the image is the most
discriminant or which part of the structure might be
more altered by pathologies. A future goal will also be
to discriminate between different pathologies : intersti-
tial lung diseases (abestosis, systemic sclerosis, fibrosis,
sarcoidosis), carcinomatous lesions etc.
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Perception Systèmes et Information, INSA de Rouen,
Rouen, France, 2005.

[3] G.S. Dibajaa and E. Thiel: ”Skeletonization algorithm
running on path-based distance maps”, Image and Vi-
sion Computing, vol.14, p.47-57, 1996.

[4] R.O. Duda and P.E. Hart: ”Pattern Classification and
Scene Analysis,” John Wiley & Sons, 1973.

[5] I. Guyon and A. Elisseeff: ”An introduction to variable
and feature selection”, Journal of Machine Learning
Research, vol.3, p.1157-1182, 2003.

[6] R.M. Haralick, K. Shanmugam and I. Dinstein: ”Tex-
tural Features for Image Classification,” Systems, Man
and Cybernetics, vol.3, no.6, p.610-621, 1973.

[7] A. Rakotomamonjy: ”Variable selection using SVM-
based criteria,” Journal of Machine Learning Research,
3:1357-1370, 2003.

[8] L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E.
Peltier, C. Cave and G. Bourg-Heckly: ”In vivo imag-
ing of the bronchial wall microstructure using fibered
confocal uorescence microscopy,” American Journal of
Respiratory and Critical Care Medicine, vol.175, no.1,
p.22-31, 2007.

[9] L. Thiberville, G.Bourg-Heckly, M. Salaün, S. Dominique
and S. Moreno-Swirc: ”Human in-vivo confocal micro-
scopic imaging of the distal bronchioles and alveoli,”
Chest Journal, vol.132, no.4, p.426, 2007.

[10] V. Vapnik: ”The nature of statistical learning theory,”
Springer, 1995.

474


