13-9

MVA2009 IAPR Conference on Machine Vision Applications, May 20-22, 2009, Yokohama, JAPAN

Image Processing Architecture for Real-Time Micro- and
Nanohandling Applications

Tim Wortmann'*, Christian Dahmen', Robert Tunnell' and Sergej Fatikow!

Division Microrobotics and Control Engineering, University of Oldenburg, Germany

Abstract

This article presents a software architecture for im-
age processing applications. Its intended use is in the
automation of manipulation processes at the micro-
and nanoscale. The main requirements for this archi-
tecture are the capability for real-time processing, the
flexibility to cover a wide range of different applications
and simplicity of usage. Some of the biggest challenges
include online changes of control- and data-flow, in-
tegration of a large number of devices for microscopy
and the need for high-speed result forwarding. The ar-
chitecture has been implemented and tested extensively.
Three key applications are presented: object tracking,
classification of biological cells and 3D image recon-
struction for scanning electron microscopes.

1 Introduction

Over the last decades, micro- and nanotechnology
developed from a discipline of fundamental research to
an indispensable sector of industry [6]. While many
individual production steps are still carried out manu-
ally, much effort is spent to provide automated proce-
dures for micro- and nanotechnological applications [2].
Some of the most important fields of research are the
manipulation of biological cells and the assembly of na-
noelectronic devices.

In order to carry out processes on the micro- and
nanoscale, visual feedback has to be used. For au-
tomation purposes, image processing algorithms are
utilized to obtain information on the current state of
the manipulated objects. Up to now, the algorithms
used in nano- and micromanipulation are often imple-
mented in separate monolithic software packages. This
has the disadvantage that changing application settings
with different algorithm requirements demand reimple-
mentation of parts of the software or a change of the
software. To prevent this, a graph-based scheme has
been implemented to enable flexible usage of any im-
plemented algorithm in different manipulation setups.

The new image processing architecture will be pro-
posed in section 2. We will demonstrate its capabilities
by presenting three sample applications that have been
implemented and tested: object tracking using active
contours, cell classification using shape features and 3D
image reconstruction for scanning electron microscopes

(SEMs).

*This work was supported in part by the European Commu-
nity: Project HYDROMEL (026622-2). Corresponding Author:
wortmann@informatik.uni-oldenburg.de

418

2 Architecture

In order to enable flexible image processing, it is nec-
essary to introduce an architecture which makes this
flexibility possible. Principally, most image process-
ing tasks are easily described as an input-processing-
output (IPO) model. To increase the possibilities, this
can be detailed into pipeline structures. If this is fur-
ther generalized, graphs can cover most image process-
ing tasks. The proposed architecture is based on a
graph structure to enable flexible data flow and com-
plex image processing applications. The graph nodes
can be exchanged, added, modified and removed dur-
ing runtime. The key components of the architecture
shown in figure 1 will be described in the following.

The graph manages the nodes and connections.
Nodes are created in a node factory and connected to
each other using ports.

The graph nodes are implemented as threads,
leading to a certain level of coarse parallelism. All
nodes have the same interface while fulfilling different
functions. Input nodes function as data sources, out-
put nodes are data sinks. Processing nodes implement
algorithms working on the image data. Sync nodes
enable parallel asynchronous data streams. All nodes
have parameters which control their behaviour.

Each node contains parameters that are imple-
mented to be of arbitrary number and can have dif-
ferent types. All parameters can be set during runtime
and may be used to set up the node function.

All nodes have ports for communications. There
are two types of ports for input and output. Input
nodes do not have input ports, while output nodes lack
output ports. Each output port can connect to an ar-
bitrary number of input ports. By this, the parallel
execution of different algorithms is inherently enabled.
All ports are typed, and it is possible to specify input
ports as optional or required.

The input nodes implement the interface to the
imaging hardware, which can be USB, Ethernet or
Firewire cameras, video file input, specific framegrab-
bers or interfaces to SEMs. The whole functionality is
encapsulated in the node so that a standardized inter-
face is available for any image source. The input nodes
has functions such as continuous or triggered capturing
and parameters such as image size and frame rate.

The output nodes realize sinks for the data gen-
erated in the graph. Possibilities include video file
output, screen display, data file output for non-image
data, network streaming and interfaces to other soft-
ware packages. Again, all functionality is encapsulated,
so that all output nodes can be used interchangeably.

El NodeFactory £ objectWithParameter

& createNode ()

E] pixelOperations

& listNodes () E InputHandler
*
£l Node & capture ()
E syncNode o capturt . ” .
" LinearFilterOperations
&2 createInput () £ Thread = £
& Graph &2 createOutput ()
4% getInput () . .
&2 createNode () ‘fg getOutput ()] TrackingAlgorithm
2 removeNode () & start () & visionNode] Algorithm
43 connect () & stop () —— -
*‘5 disConnect () * ‘fé pause () i% run () 4 onError () Q ClassificationAlgorithm
? s:art (()) £ getType () & execute ()
stop
ig pause () neiohbor] 3DAIgorithm
inputPort 9 E] outputHandler
outputPort E port .
* * *
5 getType () .
£ outputport E InputPort .
targets 42 addTarget ()
addTarge
3 addSource () 4
4 removeSource () * {5 removeTarget ()
3 send () 4 receive ()

Figure 1: Class diagram of the image processing software core, implementing a graph structure. Edges of the graph

are implicit by setting the target port of output ports.

Stereo

Algorithm 3D Analysis

SEM Input Data Output

[

Object
Tracking

Object
Recognition

Figure 2: Example image processing graph for a ma-
nipulation setup. Object recognition initializes object
tracking, object tracking determines object position
and delivers position information to output and to 3D
analysis algorithm. The stereo algorithm generates a
depthmap which is evaluated at the position delivered
by the tracking.

The algorithm nodes are used to implement ar-
bitrary image processing algorithms. The range of al-
gorithms covered extends from simple point operations
to complex and computationally expensive algorithms
such as depth from stereo or different tracking or recog-
nition algorithms. The key aspect is that the interface
for these algorithms is similar, while the exact param-
eters vary. This allows the user to exchange certain al-
gorithms with other algorithms carrying out the same
function during runtime if needed.

With this graph concept, also more complex setups
can be realized. An example is shown in figure 2. The
algorithms in this case depend on each other. The
recognition algorithm is used to initialize the track-
ing algorithm, after which it is paused for the sub-
sequent frames. The tracking algorithm extracts the
two-dimensional position of an object from the images,
delivering this position to the output node and to the
3D analysis node which extracts the z-position from
the depth map delivered by the stereo algorithm. The
requirements on the used hardware mainly depend on
the used algorithms. A simple graph has very little
overhead apart from capturing and display.

All components of the software can be controlled ei-

ther by the graphical user interface, or remotely via
network. For the setup of graphs, different functions

419

are provided. All operations with nodes can be ex-
ecuted: insertion, removal, connection of two nodes.
Additionally, each node may be halted and started in-
dependently. All parameters of the nodes can deliver
valid ranges for their values and can be set remotely.
Operations such as image acquisition and certain algo-
rithms can be triggered via the GUI or remotely. Com-
bining this with the network output node, a controller
has full access to all aspects of the image processing
software.

For automation scenarios, different image processing
algorithms are used. In the following, three different
methods are presented which have been successfully
integrated.

3 Object tracking

One problem for manipulation processes on the
nanoscale is the difficulty of estimating the position of
objects during handling. The position may differ due
to e.g. thermal drift or backlash. To solve this prob-
lem, object tracking algorithms are used with image
sources such as microscope cameras and SEMs.

Different approaches have been proposed for object
tracking on the nanoscale. These are based either on
template matching [8], rigid body models [5] or active
contours [9]. The algorithm here is inspired by the ac-
tive contour approach (see also [7]), which is extended
to deliver estimates for out of focus displacement by
analyzing object focus.

In order to gain robustness against noise, the active
contours are not used in their original formulation, but
using an energy function derived from region statis-
tics. By this, not only the contour outline, but the
whole area enclosed by the contour contributes to the
minimization process. This ensures higher stability of
the contour.

Additionally, by evaluating the area statistics, it
is possible to derive a sharpness measure for the ob-
ject. When the maximal sharpness and the actual
sharpness of the object is known, an estimate for ob-
ject displacement can be calculated. If this is com-
bined with the two-dimensional position information,
a three-dimensional object position is obtained. The

Figure 3: Active contour based tracking algorithm ap-
plied to part of a chessboard calibration pattern in the
SEM.

two-dimensional part of the algorithm is shown in fig-
ure 3.

Important for this algorithm is that the execution
should be possible in real-time, which posed no prob-
lems for the developed architecture. Also, the algo-
rithm in addition to the images depends on informa-
tion about the actual working distance of the SEM,
which was easy to deliver using the SEM input node.
The active contour segmentation details can be trans-
ferred to subsequent algorithms for further analysis of
the enclosed object.

4 Cell Classification

_____-—___

b ¢ Q »
- —— ——
s - 9 O
Figure 4: Selection of image scenes showing viable (up-

per two rows) and damaged (lower two rows) cells in
motion.

Another application which has been implemented
using the new architecture is the classification of biolog-
ical cells. We use oocytes of Xenopus Laevis (African
clawed frog) intended for later microinjection. During
separation, cells can be damaged and need to be re-
moved from the viable cells. The cells flow through a
microfluidic channel and are classified on the fly. This
process is often referred to as image flow cytometry
[1]. Figure 4 shows a selection of cells and particles in
motion.

420

Figure 5: Image sequence depicting the segmentation
procedure of a cell image scene using background sub-
traction.

%) T

% 158 - 1

5 2 o °

< 10[8 g7 .7 1

o o og

X s o o 1

5 [000 o

Q0 ol \ \ \ \ \

8 0 0.1 0.2 0.3 0.4 0.5 0.6
Object Size

Figure 6: Scatter plot of relative object roundness and
object size. Circles mark damaged cells and particles,
viable cells are marked by a cross.

Defects in the outer cell hull can be detected by
using a shape descriptor. Initially, the cell is seg-
mented from the background using background sub-
traction (see figure 5). We choose two features of the
object shape:

1. Size approximated by the number of pixels
2. Object roundness R as described in [3]:
_ dm - Area

Perimeter? M)

Figure 6 shows a scatter plot of the two shape
features obtained by experiment. The object size is
normed to half the size of the region of interest, R is
outweighted by a factor of 18. A non linear Support
Vector Machine [10] has been trained on these data
points. Reliable defect detection was achieved at up to
60 fps.

5 3D SEM

Many micro- and nanorobotic applications, e.g. pick
and place operations require z positions of objects in
addition to the x and y positions. The SEM nor-
mally delivers two-dimensional pictures and therefore
a stereoscopic lens system is used to acquire two sep-
arate images with a slightly different viewing angle.
The aim of the 3D module is to locate corresponding
points in each stereo image and calculate the disparity
between them to determine the z position. The new
software architecture described in section 2 provides a
solid basis to integrate an already existing, standalone
version of a stereoscopic algorithm. Thereby, a com-
plete image processing pipeline including 3D image ac-
quisition, calculation and analysis can be built. Dis-
parity calculation of the 3D module [4] consists of two
parts: The estimation layer, which calculates a number
of possible disparities per image pixel and the coher-
ence layer, which makes a coherence analysis to calcu-
late an unique result. Many applications in the SEM

e.g. the manipulation of carbon nano tubes (CNTs),
require a flexible embedding of image preprocessing be-
cause of the SEM images’ inconsistent quality. Due to
the new pipeline-based architecture, the image acquisi-
tion parameters and the preprocessing can be changed
with the opportunity to directly observe the outcome.
The figure 2 shows a possible variation of an image
processing pipeline using the 3D module.

Because of the integration, the 3D module is now
capable to run from the acquisition to the analysis as
a well defined, stable and coherent image processing
unit. To fit the real-time requirements of many
applications, it is necessary to optimize the runtime
of existing 3D module. The main approach is to
parallelize the calculation of the disparity values. The
parallelization mainly effects the estimation (figure 7)
and coherence layer of the stereo algorithm. These
changes result in a speed-up of up to 300% depending
on the image size. As a validation example, the 3D

L |

Figure 7: Estimation cube. Each of the cube elements
is a possible disparity and can be independently calcu-
lated.

calculation of a CNT and a electro-thermally actuated
microgripper (figure 8) performed in an image with
200 x 200 pixels. Before optimization, the algorithm
needed 2.6 s for the calculation and analysis of the
disparity values. The parallelized version solves the
same task in 1.15 s. Additionally, an extra acquisition
module was implemented to load stereo images from
disk and enable the offline calibration of the 3D
module. Thanks to the new architecture, different
optimization implementations can be benchmarked
and validity as well as accuracy of the results can be
checked at runtime.

6 Summary & Outlook

In this work, a flexible image processing architec-
ture has been presented which enables the automation
of micro- and nanohandling processes. The architec-
ture has been implemented and integrated into a pre-
existing distributed control architecture. A compre-
hensive test series proved real-time capability, a high
level of parallelism and efficient usage of resources in

421

Figure 8: 3D visualization of the validation example
(left) and Filtered disparity map (right) of a CNT
manipulation with a electro-thermally actuated micro-

gripper.

several manipulation setups. Three image processing
applications have been explained in more detail. Over-
all the software architecture is found to be flexible
enough and usable for automation purposes.
Additional steps will be taken to enable further par-
allelization by using commodity graphics processors
(GPGPU). First attempts have shown that this ap-
proach has high potential to increase the real-time ca-
pability of certain very complex algorithms. Exten-
sions to our software architecture will be developed to
synchronize GPGPU and main processor calculations
and to enable a certain amount of load balancing.

References

[1] L. Bonetta. Flow cytometry smaller and better. Na-
ture methods, 2005.
[2] S. Fatikow (Ed.). Automated Nanohandling by Micro-
robots. Springer Series in Advanced Manufacturing.
Springer, 2008.
M. L. Hentschel and N. W. Page. Selection of de-
scriptors for particle shape characterization. Particle
& Particle Systems Characterization, 2002.
M. Jahnisch. &8D-image system for nano handling in
the scanning electron microscope. PhD thesis, Univer-
sitédt Oldenburg , Department fiir Informatik, 2008.
B. Kratochvil, L. Dong, and B. Nelson. Real-time
rigid-body visual tracking in a scanning electron mi-
croscope. In Proc. of the 7th IEEE Conf. on Nan-
otechnology (IEEE-NANO2007), Hong Kong, China,
August 2007.
B. Nelson, J. Abbott, Z. Nagy, and F. Beyeler. Robotics
in the small, part i and ii. IEEE Robotics and Automa-
tion Magazine, 14:92-103, 111-121, 2007.
T. Sievers. FEchtzeit-Objektverfolgung im Rasterelek-
tronenmikroskop. PhD thesis, University of Olden-
burg, 2007.
T. Sievers and S. Fatikow. Visual servoing of a mobile
microrobot inside a scanning electron microscope. In
Proc. of IEEE Int. Conference of Intelligent Robots
and Systems (IROS), Edmonton, Canada, 2005.
T. Sievers and S. Fatikow. Real-time object track-
ing for the robot-based nanohandling in a scanning
electron microscope. Journal of Micromechatronics
- Special Issue on Micro/Nanohandling, 3(3-4):267—
284(18), 2006.
I. Steinwart and A. Christmann. Support Vector Ma-
chines. Information Science and Statistics. Springer,
2008.

3]

[4]

[10]

