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Abstract

Irregular lighting causes temporal variations of image 
intensities, which makes most existing block matching 
techniques ineffective. For this, we propose a novel 
matching technique based on gradient orientation that is 
known to be insensitive to variations of intensities. We 
show that gradient orientation information can be effec-
tively utilized by means of two intensity patterns that are 
obtained as the x and y components of unit gradient vec-
tors. Simulation results show the proposed technique is 
remarkably robust to both spatially uniform and 
non-uniform changes of image intensities. 

1. Introduction 

Establishment of correspondence between two or more 
images is an important task in image sequence processing 
and computer vision applications. For instance, image 
correspondence is an essential step for estimating motions 
and depths. Motion estimation is concerned with the cor-
respondence between time-sequential images such as 
video sequences. It finds a variety of applications, includ-
ing object-based video coding (e.g. MPEG-4), object 
detection for surveillance systems, scene changes detec-
tion for video editing, and image stabilization technology 
for image acquisition devices. 

Techniques for image correspondence in the spatial 
domain may be classified into two categories; gradi-
ent-based methods and matching methods. This paper is 
concerned with the latter approach that is also widely re-
ferred to as block matching, template matching, or 
correlation-based methods [1]-[5]. In either approach, the 
intensities of objects in an image are assumed to be con-
stant over time. This assumption, however, is often 
violated by changes of lighting conditions that is a com-
mon incident in outdoor environment. To circumvent this 
irregular illumination problem, it is reasonable to employ 
a feature that is less dependent on image intensities or 
gradients.  

This paper presents a novel block matching technique 
using gradient orientation information, rather than relying 
on conventional image features such as intensities and 
gradients, because gradient orientation is known to be 
insensitive to variations in illumination [6]-[9]. A com-
parative study with conventional block matching 
techniques reveals that the proposed method is remarkably 
robust to both uniformly and non-uniformly varying im-
age intensities.  

2. Method

2.1 Gradient orientation information 
Let I(x, y) be the image intensities at pixel coordinates 

(x, y). The gradient vectors of I may be expressed by (Ix,
Iy) where Ix and Iy are the partial derivatives of I in x and 
y directions. Gradient orientation information (GOI) can 
then be expressed using unit gradient vectors (nx, ny) that 
are obtained by dividing (Ix, Iy) by their norms as 
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where we assign zero to nx(x, y) and ny(x, y) when the de-
nominator is zero to avoid zero-division.  

Fig. 1(a) shows I(x, y) of a test image of size 256 by 
256 pixels with 256 gray levels. The upper left corner of 
the image is the origin, and vertical and horizontal axes 
are respectively denoted as x and y axes. The small region 
of size 32 by 32 pixels encompassed by a white square in 
Fig. 1(a) is cropped and enlarged in Fig. 1(b). Fig. 1(c) 
shows the gradient vectors (Ix, Iy) within the cropped re-
gion while Fig. 1(d) shows the unit gradient vectors 
(UGVs) in the same region. Note that UGVs carry rich 
local gradient information even in relatively low-contrast 
areas.

Figure 1. (a) A test image, (b) a cropped and 
enlarged subimage, (c) gradient vectors and (d) 
unit gradient vectors within the subimage. 

 
Since UGVs are represented by two scalars nx and ny

ranging from �1 to 1, we may easily utilize GOI by treat-
ing these scalars as intensities. Fig. 2(a) shows the 
gradient orientation pattern nx corresponding to the subi-
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mage in Fig. 1(b) while Fig. 2(b) shows the gradient ori-
entation pattern ny. Both nx and ny are scaled and 
visualized as 8-bit intensity patterns.  
 

 
(a) 

 
(b) 

Figure 2. (a) Gradient orientation pattern nx and (b) 
gradient orientation pattern ny.

It should be stressed that the use of UGVs is computa-
tionally more efficient than using angular values 	 (rad) 
because UGVs require no modulo calculations [9]. 

2.2 Intensity-invariance of gradient orientation 

Gradient orientation is known to be insensitive to varia-
tions of lighting conditions [6]-[9]. This is because the 
order of image intensities in a local area is well preserved 
under varying lighting conditions. For instance, the black 
pupil is darker than the brown iris irrespective of illumi-
nation changes. Fig. 3 demonstrates such intensity 
invariance of gradient orientation. Fig. 3(a) shows the 
same subimage as in Fig. 1(b), except that the intensities 
of the upper half of it are reduced by 50%. Figs. 3(b) and 
3(c) show the gradient orientation patterns nx and ny. The 
comparison between the patterns in Fig. 2 and those in 
Figs. 3(b) and 3(c) shows that gradient orientation patterns 
remain unchanged before and after shading occurs, except 
for slight changes along the border of the shade.  

(a) (b) (c) 

Figure 3. (a) Subimage whose upper half is shaded, 
(b) gradient orientation pattern nx and (c) gradient 
orientation pattern ny within the subimage. 

2.3 Block matching technique with GOI 

Instead of image intensities, we make use of gradient 
orientation patterns as inputs to a conventional block 
matching technique with the widely used matching metric, 
the sum of absolute differences (SAD) criterion:  
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where p
�

 denotes a point ),( yx  in the image coordinate, 

d
�

 a displacement ),( vu  from that point, equivalent to 
the motion vector between two time-sequential images 
being compared, N the block size, nx1 and ny1 gradient 
orientation patterns of the first frame (reference image), 
and nx2 and ny2 the second frame where a best-matching 
block is being searching for. Finally, these two may be 
combined into one measure 
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The position of the best matching is indicated by the 
minimum of Eq. (3). We call this proposed method the 
gradient orientation pattern matching technique (GOPM). 
Note that we also have evaluated the sum of squared dif-
ferences (SSD) criterion, but there was no noticeable 
improvement of performance.  

3. Results and Discussion 

3.1 Simulations on synthetic image sequences 

We compare GOPM with SAD block matching (SAD) 
and zero-mean normalized cross-correlation (ZNCC) on 
four synthetic image sequences. Four standard test images 
of size 256 by 256 pixels with 256 gray levels are used as 
the first frames or references. The second frames are then 
generated by translating them by 5 pixels both horizon-
tally and vertically. We have computed 225 (15 by 15) 
motion vectors in each sequence. The size of the block is 
fixed at 16 by 16 pixels. The range for searching for the 
best matching position in the second image is set at �8
pixels both horizontally and vertically. When a motion 
vector points a correct pixel, it is considered as a success-
ful motion estimate. To make the simulation realistic, 
zero-mean Gaussian noise is randomly generated and 
added to every image where the SNR is set at approxi-
mately 40dB. Further, to test the robustness to varying 
lightings, the intensities of the second image are modified 
in four ways. One is a uniform reduction of intensities, 
and the other three are non-uniform modifications of in-
tensities achieved by multiplying the masks shown in Fig. 
4. Figs. 4(a) and 4(b) show realistic smooth linear and 
Gaussian shadings. Fig. 4(c), on the other hand, shows 
rapidly varying shadows that may simulate the case that a 
spot light is flashed on an object.  

(a) (b) (c) 

Figure 4. (a) Linear shadow mask, (b) Gaussian 
shadow mask and (c) checkerboard shadow mask.    

Table 1 shows the successful motion estimation rates 
(%) by the three methods in which the second images are 
subject to the uniform intensity reduction by 20% (Simu-
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lation 1). It is evident that SAD does not work at all while 
ZNCC and GOPM work nearly perfectly. Tables 2 and 3 
show the success rates under non-uniform but smooth 
changes of image intensities. In Simulation 2, linear shad-
ing is applied to the second images where intensities are 
linearly reduced from the left to the right end of the image 
up to 50% (Fig. 4(a), Table 2). In Simulation 3, Gaussian 
shading is applied so that intensities are reduced from the 
center of the image following the profile of a Gaussian 
function (Fig. 4(b), Table 3). Under non-uniform but 
smooth variations of intensities, both ZNCC and GOPM 
achieve high success rates. Unsuccessful motion estimates 
are due to the lack of gradient information (e.g. sky) and 
the aperture problem.  

In Simulation 4, rapid and non-uniform shading is ap-
plied in which the image intensities in vertical and 
horizontal stripes are reduced to 50% and the intensities in 
the areas where two stripes overlap are reduced to 25% 
(Fig. 4(c)). ZNCC can cope with both additive and multi-
plicative variations of intensities when those variations 
occur uniformly within a block. By contrast, GOPM can 
handle such rapid and non-uniform intensity changes 
within a block, which is highlighted in Table 4.  
 

Table 1. Success rates under a mildly noisy condi-
tion with uniformly varying image intensities. 

Simulation 1 SAD ZNCC GOPM 
Lena 24.9 100 100 
Girl 27.1 100 100 
Cameraman 40.9 97.8 98.2 
House 4.90 99.6 96.4 

 
Table 2. Success rates under a mildly noisy condi-
tion with linear shading.  

Simulation 2 SAD ZNCC GOPM 
Lena 25.8 99.1 100 
Girl 27.1 100 100 
Cameraman 39.1 98.7 99.1 
House 4.89 97.3 96.0 

 
Table 3. Success rates under a mildly noisy condi-
tion with Gaussian shading.  

Simulation 3 SAD ZNCC GOPM 
Lena 44.9 97.3 99.6 
Girl 21.3 100 99.6 
Cameraman 36.9 98.2 97.3 
House 41.8 94.2 92.9 

 
Table 4. Success rates under a mildly noisy condi-
tion with rapid and non-uniform shading.  

Simulation 4 SAD ZNCC GOPM 
Lena 10.2 20.0 97.3 
Girl 13.8 26.2 100 

Cameraman 13.3 33.3 91.6 
House 2.2 5.33 88.0 

 

3.2 Simulations on real image sequences 

We next evaluate the performances of SAD, ZNCC, 
and GOPM on two real image sequences, A and B. Since 
there is no ground truth data (i.e., true motion vectors) 
available for these real sequences, we use the motion vec-
tors estimated under a constant illumination as references 
shown in the left column of Fig. 5. Fig. 5 shows the image 
sequence A in which the camera tracks a walking man. 
The motion vectors in background are supposed to point 
rightward while those on the man are small. Under such 
ideal lighting condition, the motion estimates by the three 
methods are similar to each other. We then apply the same 
four intensity modifications as in 3.1. The robustness of 
motion estimation is evaluated in terms of the means and 
variances ),( 2�m  of the differences between the refer-
ences and the motion vectors estimated under varying 
lighting conditions. Table 5 shows the differences when 
the second image is subject to a uniform change of inten-
sities as described in Simulation 1. SAD shows large 
variances while those of ZNCC and GOPM are far smaller, 
indicating that the latter two methods work robustly with 
uniform variations of intensities. Tables 6 and 7 show the 
differences when the second image is subject to 
non-uniform but smooth changes of intensities as depicted 
in Simulations 2 and 3. SAD fails to estimate motion re-
liably. Conversely, ZNCC and GOPM withstand such 
lighting conditions. Finally, Table 8 shows the differences 
when the second image is subject to rapid and 
non-uniform changes of intensities as in Simulation 4. As 
shown in the right column of Fig. 5, SAD and ZNCC fail 
to work properly under such condition, while GOPM still 
estimates reasonably accurate motion vectors. 

Table 5. Differences in the estimated motion vec-
tors before and after uniform shading is applied. 
Sim 1 SAD ZNCC GOPM  

Image A (5.02, 24.0) (0.016, 0.02) (0.067, 0.25) 
Image B (3.51, 21.5) (0.067, 0.55) (0.19, 1.77) 
 
Table 6. Differences in the estimated motion vec-
tors before and after linear shading is applied.   
Sim 2 SAD ZNCC GOPM  

Image A (6.19, 31.1) (0.013, 0.63) (0.11, 0.41) 
Image B (3.67,20.3) (0.36, 3.46) (0.34, 2.79) 
 
Table 7. Differences in estimated motion vectors 
before and after Gaussian shading is applied.  

Sim 3 SAD ZNCC GOPM  
Image A (5.77, 22.5) (0.78, 4.74) (0.22, 0.84) 
Image B (4.19, 28.1) (0.98, 9.62) (0.70, 5.44) 

 
Table 8. Differences in estimated motion vectors be-
fore and after rapid and non-uniform shading is 
applied.   

Sim 4 SAD ZNCC GOPM  
Image A (6.99, 17.9) (5.93, 24.7) (0.88, 4.11) 
Image B (5.21, 20.5) (3.69, 23.5) (0.77, 5.30) 
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(a)  (b) 

(c)  (d) 

(e)  (f) 
Figure 5. Motion vectors estimated by (a), (b) 
SAD, (c), (d) ZNCC and (e), (f) GOPM under con-
stant (left column) and varying lighting conditions 
(right column). 

3.3 Computational cost 
We have compared the computational costs of SAD, 

ZNCC, and GOPM. Table 9 shows the computation time 
of each method for computing 225 motion vectors. The 
three techniques are implemented in MATLAB (Ver. 7.0) 
and executed on a PC with the Pentium 4 (2.80GHz) and 
1GB of RAM. SAD is the fastest method among the three 
owing to its simplest similarity measure whereas ZNCC is 
the slowest because of the complexity of its computation 
[4]. GOPM is slower than SAD because GOPM requires 
an extra computation of Eq. (1) and also two 
sums-of-differences have to be computed as in Eq. (2). It 
is important to note that GOPM is faster than ZNCC. 
GOPM can be computed more efficiently than ZNCC be-
cause the similarity measure of GOPM is the same as that 
of SAD which is much simpler than that of ZNCC. An-
other advantage of GOPM is that it allows the use of 
integers while real numbers are necessary for ZNCC.  

 
Table 9: Computation times of SAD, ZNCC, and 
GOPM. 

 SAD ZNCC GOPM 
Computation time (sec) 0.94 3.97 1.47 

4. Conclusions

Most existing approaches for image matching are based 
on either image intensities or gradients. Consequently, it is 
inevitable that these conventional techniques are suscepti-
ble to varying image intensities caused by irregular 
lighting conditions. To cope with this illumination prob-

lem, we have presented a novel matching technique that is 
based on gradient orientation patterns that can be obtained 
as the x and y components of unit gradient vectors. We do 
not use the angular values 	 (rad) of gradient vectors di-
rectly to avoid modulo computation, which enables a fast 
implementation of the proposed method. Simulation re-
sults on both synthetic and real image sequences have 
revealed that the proposed technique, GOPM, works much 
more robustly than SAD with varying image intensities. 
The motion estimation performance of GOPM is compa-
rable to that of ZNCC with uniformly changing intensities 
and also non-uniformly but smoothly varying intensities. 
Furthermore, it is a significant advantage of GOPM over 
ZNCC that it can cope with non-uniform and rapid 
changes of image intensities that may occur in outdoor 
environment. We have also shown that the computational 
cost of GOPM is less than that of ZNCC. Gradient vectors 
are generally computed at an early stage of various image 
processing and computer vision applications, and are 
readily available. The normalization of the gradient vec-
tors to obtain the unit gradient vectors can be performed 
prior to the computation for image correspondence. 
Therefore, GOPM will be well-suited to real-time applica-
tions and also hardware implementation.  
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