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Abstract

Among all the issues involved in Geographic Infor-
mation Science, automating the update of 2D building
databases is a crucial and challenging issue. Such an
update usually starts out with a manual change detec-
tion process. The main goal of this paper is to present
a new method to automate the detection of changes in
a 2D building database, starting from satellite images.
The workflow of our approach is divided into 2 phases.
Primitives, extracted from multiple images and from a
correlation Digital Elevation Model (DEM), are firstly
collected for each building and matched with primitives
derived from the existing database to achieve a final
decision about acceptance or rejection. A specific al-
gorithm, based on the DEM and a computed Digital
Terrain Model (DTM), is subsequently used to extract
the new buildings of the scene. The method is here in-
troduced and tested in two test areas, very different re-
garding the land use and topography. The outcomes of
the method are assessed and show the good performance
of our system, especially in terms of completeness, ro-
bustness and transferability.

1 Introduction

Traditionally, the mapping process, e.g. the practice
of producing one representation of the Earth through
a Geographic Information System (GIS) is carried out
by field surveying: objects of interest (buildings, roads,
etc.) are captured by operators on the field (with
GPS), then processed and stored in the GIS as a vec-
tor database. Images are generally not considered in
the workflow. At the end of the process, the ques-
tion that immediately arises concerns the update of
the database, more specifically the strategy to use for
that purpose. This question is a topical issue in de-
veloped countries, as GIS databases - in particular 2D
building databases - have been completed during the
last decade.

1.1 Map Update Strategies

Many strategies exist to keep such databases up-to-
date, such like the collaborative strategy found for in-
stance in the Google Map Maker project1, that consists
of the aggregation of web maps generated by a group of

∗The first author would like to thank the French Space
Agency (CNES) for providing Pléiades-HR images.

1www.google.com/mapmaker, last date accessed: 03-06-2009.

individuals. Another strategy consists in collecting in-
formation about the update from external data such as
airborne images and laserscanning data and also con-
sists in comparing the existing database to more recent
data in order to detect changes i.e. demolished, modi-
fied or new objects in the outdated database.
Among possible external data, images - in particular
satellite images - have qualitatively advanced to a point
where they become interesting input to solve mapping,
here change detection issues. Thus, most satellite sys-
tems offer now a high spatial resolution (the panchro-
matic resolution is 1m for Ikonos, 60 cm for Quick-
bird, 50cm for Worldview-I, 50cm for the Pléiades-HR
system that shall be ready for launch in early 2010)
and have already and successfully been used in pre-
vious works for mapping purposes, e.g. for the au-
tomatic production of city 3D models [4]. Moreover,
satellite systems have had their reactivity considerably
upgraded during the last decade and are now capable
to acquire a considerable amount of information in a
relatively short amount of time, which complies with
the reactivity required in a change detection procedure.

1.2 Related Works

A lot of change detection methods (Refer to [5] and
[6] for two examples) can be found in literature. If it is
difficult to compare them efficiently, as they have been
developed in different contexts (regarding the specifica-
tion of the database to update, the kind of input data
to use, the level of user interactivity, etc.), almost all
of them are based on a preliminary land cover classifi-
cation of input data. The method described in [6] also
splits the change detection procedure into three stages.
First, a Dempster-Shafer fusion process is carried out
on a per-pixel basis and results in a classification of the
input data, here CIR (Colour InfraRed) images and a
DEM, into one of four predefined classes: buildings,
trees, grass land and bare soil. Connected components
of building pixels are then grouped to constitute initial
building regions and a second Dempster-Shafer fusion
process is carried out on a per-region basis to elimi-
nate regions corresponding to trees. The third stage
corresponds to the actual change detection process, in
which the detected buildings are compared to existing
GIS data, which results in a very detailed change map.
Another strategy is proposed in [1] and consists in split-
ting the procedure into two stages: the verification of
the database that largely uses the initial description of
the database to detect outdated objects and the new
building detection. The key idea here is based on the
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assumption that the number of changes is small com-
pared to the number of unchanged objects. [6] takes
up this idea and also introduces a “bias” in the first
per-pixel Dempster-Shafer classification, which trans-
lates the high probability of a building pixel of the map
to still belong to a building in recent data.

1.3 Overview of the Method

The main goal of this paper is to present a new ap-
proach in order to automatically detect changes in a
2D building vector database from more recent satel-
lite images. The input of our method is given by tri-
stereoscopic CIR Pléiades-HR satellite images, with a
base-to-height ratio of 0.15 and a spatial resolution of
50cm. A stereo-matching algorithm, based on [7] is
used to compute a DEM and a vegetation mask is de-
rived from the CIR satellite images through the Nor-
malised Difference Vegetation Index (NDVI). Note that
the DEM is given in the form of a matrix (regular
grid) of height values (raster model). The output of
the method is given by a change map, in which build-
ings are labeled unchanged, demolished, modified (e.g.
having a wrong geometric description) or new.
The method described here is meant to be an alter-
native to the previously mentioned methods, mostly
based on a preliminary land use classification and is
based on two key ideas. The first one takes up [1]
and consists in splitting the change detection proce-
dure (known to be difficult to solve) into two subtasks
easier to solve, the verification of the database (phase
I) and the detection of new buildings (phase II). The
second one consists in using massively 3D geometric
primitives in the system.

2 Automatic Verification of the
Database (Phase I)

This first phase also implements a knowledge-driven
approach: the key idea here is to use the prior knowl-
edge provided by the database about the geometric de-
scription of buildings and to collect 2D & 3D informa-
tion from input sources in order to confirm or not their
existence in the outdated database.

2.1 General Workflow

Geometric linear primitives are also extracted from
input data. For each object (building) to verify, the
primitives that fulfil a user-defined distance and orien-
tation with it are selected. A similarity score is then
computed per building: it is based on the coverage
rate between the previously selected primitives and the
building. This similarity score is used in a threshold-
based module and a final decision about acceptance or
rejection is achieved for each building. This first phase
leads to a partially updated database, in which build-
ings are labeled demolished, modified or unchanged.

2.2 Extraction of Pertinent Information
from Input Data

The performance of this phase is obviously related
to the pertinence of primitives extracted from input
data. Two kinds of primitives are used in our work,
firstly 2D contours and secondly 3D segments.
The classical gradient operator [3] is firstly applied to

the DEM and a hysteresis detector is used to extract
the local maxima in the direction of gradients, which
are then chained, polygonized and deliver the 2D con-
tours. These 2D contours also correspond to the height
discontinuities in the DEM. As the DEM is not surpris-
ingly less accurate in shadow and vegetated areas, due
to classical drawbacks of stereo-matching algorithms,
the 2D contours are less reliable at such locations and
other features consequently need to be extracted.
3D segments are thus injected in our system. They
are generated directly from multiple satellite images
with [8]. This algorithm can be divided into 4 stages.
2D segments are firstly extracted from source images
(stage 1) with [3]. A set of so-called associations (i.e.
possible correspondences) is subsequently determined
(stage 2), by matching 2D segments from the Object
Space through the well-known Sweep Plane technique
(an association also corresponds to a set of 2D segments
(in images), whose projections onto a plane (z = zk)
intersect each other in at least one voxel (x,y,zk) of the
Object Space). The set of associations is then pruned
(stage 3), according to a geometric constraint and are
lastly used to reconstruct the 3D segments (stage 4).
More details can be found in [8].
These 3D segments are particularly interesting as they
are shown to be accurate in planimetry and represent a
good caricature of buildings in an urban environment
(they are used as input data in a 3D city modeler).

3 New Building Detection (Phase II)

The goal of this phase is to detect new buidlings in
the scene. The key idea here is to extract the above-
ground objects that neither correspond to a building
already present in the database nor a tree.

3.1 General Workflow

A specific methodology is proposed to achieve that
goal (as illustrated in Figure 1). A DTM is calcu-
lated and a normalized DEM (nDEM = DEM - DTM)2

is computed and applied a geometric threshold (here
2.5m) to build a new above-ground mask. This bi-
nary mask is then compared to the initial above-ground
mask (composed of the vegetation mask and a building
mask, easily derived from the database to update) with
dedicated morphological tools: objects that appear in
both masks are filtered out and remaining objects cor-
respond to new buildings.

3.2 DTM Generation

The key issues of this phase are the computation
of the DTM and its accuracy. In our work, the
DTM is directly derived from the DEM and the ini-
tial above-ground mask. The DTM generation prob-
lem is considered solved when the terrain surface zc,l

is determined at the nodes pc,l = (xc, yl) of the regu-
lar grid, already defined for the input DEM. Note that
(c, l) ∈ [1,M ] × [1, N ] with M and N, respectively the
number of columns and rows of the regular grid. The
DTM generation is here formalised as the minimisation

2A Digital Terrain Model (DTM) is a 2.5D representation of
the terrain surface. A Digital Elevation Model (DEM) is a 2.5D
representation of the earth surface, including any above-ground
objects, such as trees and human settlements. A nDEM also
gives the height of above-ground objects in the scene.
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Figure 1: Detection of new buildings (illustration for the Toulouse test area). (1) : Initial DEM (lighter = higher). (2) :
Processed DTM (with the contour lines superimposed). (3) : Processed above-ground mask. (4) : New building mask.

of a given energy E(z) = K(z) + λG(z), where K(z)
refers to the regularisation term (i.e. a prior knowl-
edge about the surface regularity) and G(z) refers to
the data term. obsc,l correspond to observations e.g.
DEM height points out of the above-ground mask and
λ is a user-defined balance coefficient.

K(z) =
∑

(c,l)∈[1,M ]×[1,N ]

( ∂2z

∂2xc

)2

+
( ∂2z

∂2yl

)2

(1)

G(z) =
∑

(c, l) ∈ [1, M ] × [1, N ]
pc,l /∈ Vegetation Mask
pc,l /∈ Building Mask

ρ (zc,l − obsc,l) (2)

The main problem concerns the outliers i.e. above-
ground points present in the DEM but not in the above-
ground mask. They may correspond to cars, street
furniture, inaccuracies in the vegetation mask (omit-
ted trees) or inaccuracies during the DEM production
(false correlation). As they systematically make the
final DTM surface deviate from the true terrain, a spe-
cific module ρ is introduced in the data term to fil-
ter them. It consists of a dissymmetric robust Tukey-
Huber norm (derived from the M-estimator theory [9])
that downweights observation points not close enough
to the estimated model (typically outliers) and favours
lower points (typically inliers i.e. true ground points).
At the end of the iterative minimisation process, the
terrain surface best fits inliers and the terrain shape
is reconstructed accurately. The accuracy of the DTM
is estimated with ground truth data and appears to
be optimal: the height standard deviation, between a
sample of reference height points (captured by an op-
erator) and corresponding values in the DTM is 1.47m,
which is in line with the theoretical value (ranging from
0.9m to 1.8m) expected for a tri-stereocopic computer-
vision system such as Pléiades-HR.
Note that the DTM is all the more accurate as inliers
are present in initial observations. As a consequence,
the buildings, considered demolished in the first phase
i.e. corresponding to potential ground points are re-
moved from the building input mask for the DTM gen-
eration: here, the splitting of the change detection pro-
cedure appears to be crucial to improve the accuracy of
the DTM and, at the end, the new building detection.

4 Experiments

The performance of the method is assessed in two
test areas, Toulouse and Amiens (France), very dif-
ferent regarding the kind of land use and topography.

Toulouse has an area of 1 km2 and features a hilly and
suburban area, with detached buildings, very different
from each other with respect to the size, height, shape
and roofing material. Amiens has an area of 0.5 km2

and features a relatively flat and densely built-up ur-
ban area, composed of adjacent small houses, mostly
covered with slate. A ground truth is available for both
test areas and shows 51 changes for Toulouse (25 new
buildings, 11 demolished buildings, 15 modifications)
and 38 changes for Amiens (10 new constructions, 11
destructions, 17 modifications).

4.1 Evaluation Protocole

The evaluation procedure consists of a comparison of
the change map delivered by the method to the ground
truth. Two quality measures, the completeness and
correctness, are also computed.

Completeness =
TP

TP + FN
∈ [0; 1] (3)

Correctness =
TP

TP + FP
∈ [0; 1] (4)

where TP (True Positive), FP (False Positive), FN
(False Negative) - and TN (True Negative) - are de-
noted in the following confusion matrix.

�
�

�
�

�
��

Algo
True

Change No Change

Change TP FP
No Change FN TN

Table 1: Confusion Matrix.

From a practical point of view, the completeness
refers to errors kept in the final database, once the
change detection (and update) ended. The correctness
refers to unchanged objects, unnecessarily checked by
an operator. The optimal value for both quality mea-
sures is 1.

4.2 Results and Discussion

The evaluation outcomes are illustrated in Figure
2 (TP highlighted in green, FP in orange, FN in red
and TN in blue). Table 2 gives the completeness and
correctness, computed on a per-building then per-pixel
basis. In a similar way as the other change detec-
tion approaches found in literature, our method de-
livers a lot of false alarms (the correctness is 41.6% for
Toulouse and 34.5% for Amiens). The nature of these
false alarms depends on the phase. In Phase I, they
are almost entirely related to the building size (a lot

376



��������������
Quality Measure

Study area
Toulouse Amiens

Per-building Evaluation
Completeness 96.2% 98.3%
Correctness 41.6% 34.5%

Per-pixel Evaluation
Completeness 97.5% 97.7%
Correctness 75.3% 69.4%

Table 2: Per-building and per-pixel Evaluation.

of confusion occur with small buildings, which explains
why the correctness is significantly higher, respectively
75.3% and 69.4%, when computed on a per-pixel ba-
sis). In Phase II, they are related to inaccuracies in
input data: non masked trees in the vegetation mask
and overestimated shadow areas in the DEM are sys-
tematically alerted as new buildings.
However, this drawback must be put into perspective.
Firstly, the problem related to false alarms appears to
be hard to avoid as it mainly concerns small buildings,
for which pertinent information is known to be diffi-
cult to extract. Secondly, this problem only leads to
a pointless verification for an operator and therefore
does not alter the quality of the final database, which
is guaranteed by a high completeness rate (respectively
96.2% and 98.3%). Thirdly, the system clearly and
drastically speeds up the update procedure, as it gives
only one quarter of the database to verify, with almost
all the changes included. Lastly, similar quality mea-
sures are obtained for Toulouse and Amiens that are
processed with the same parameters. The system also
appears to have a performance independent of the test
area (i.e. the land use and topography) and is therefore
easily transferable: it is related to the use of geometric
primitives (in particular 3D segments) and to the fact
that the geometric appearance of buildings is relatively
invariant (contrary to their radiometric appearance for
example).

5 Conclusion

In this paper, we first show that GIS mapping pro-
cedures are nowadays mostly related to update and
change detection issues and that satellite imagery has
a major role to play in this industrial context. We
then present an original method to detect the changes
between a 2D building database and more recent high
resolution satellite images. Two main contributions are
presented here. First, we propose a semi-recursive ap-
proach: the objects present in the database are first
verified (phase I) and the outcomes are used to im-
prove the detection of new buildings (phase II). Sec-
ond, the 2D database to update is plunged into a 3D
environment by using invariant 3D primitives (in par-
ticular, 3D segments and DTM), reconstructed with
tri-stereoscopic Pléiades-HR capabilities. These two
contributions, combined together, give good results,
both in terms of completeness and robustness (trans-
ferability). In the future, other experiments will be
carried out on larger areas to confirm the robustness
of the method. An ongoing work also deals with the
comparison of our method with [5] and [6]. Interested
readers could refer to [2] for details about the specific
testbed used in this study, both including the compar-
ison methodology and preliminary results.

Figure 2: Evaluation in Toulouse (top) and Amiens (bot-
tom). TP cases are depicted in green, FN in red, FP in
yellow and TN in blue.
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